Immunotherapy of malignant gliomas: a modern view on the problem
- Authors: Pichugin А.А.1,2, Kovyazina R.R.3, Trondin А.4, Alekseev А.G.1,2, Kopnin P.B.5, Gessel T.V.1, Boichuk S.V.1,6
-
Affiliations:
- Kazan State Medical University, Ministry of Health of Russia
- Interregional Clinical Diagnostic Center
- Duke Kunshan University
- Hospital Clínico San Carlos
- Carcinogenesis Institute of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
- Russian Medical Academy of Continuous Professional Education
- Issue: Vol 11, No 4 (2024)
- Pages: 23-40
- Section: REVIEW ARTICLES
- Published: 09.12.2024
- URL: https://umo.abvpress.ru/jour/article/view/727
- DOI: https://doi.org/10.17650/2313-805X-2024-11-4-23-40
- ID: 727
Cite item
Full Text
Abstract
Malignant gliomas are one of the most common brain tumors in adults arising from glial cells with an extremely poor prognosis. Generally, therapy of malignant gliomas consists of radical surgical removal followed by radio- and/or chemotherapy. However, prognosis of the disease remains unfavorable.
The review presents main clinical, morphological and molecular characteristics of gliomas, their prognostic significance and role in the choice of targeted therapy based on using tyrosine kinase inhibitors and/or monoclonal antibodies. The current aspects of immunotherapy of gliomas (i.e., activation of immune cells, or blockage of immunosuppressive signaling) are discussed in detail. One of the well-known approaches of cancer immunotherapy is based on immune checkpoint inhibitors. These drugs might be effective in treatment of malignant gliomas overexpressing the molecules that suppress immune cells functions. Another promising approach of gliomas immunotherapy is based on genetically modified CAR-T cells (CAR – chimeric antigen receptor) which might identify and eliminate cancer cells. Cytokine therapy is also perspective treatment approach, as well as gene therapy which is associated with editing viral genes for production of oncolytic viruses used as anticancer vaccines. Vaccines are being developed to generate the specific antibodies recognized cancer cells and thereby stimulate the immune system to identify and destroy tumor cells.
Despite the promising potential of various gliomas immunotherapy methods, most of them are at different stages of preclinical and clinical trials. Some of them demonstrate promising results and good perspective for the further use to treat glioma patients.
About the authors
А. А. Pichugin
Kazan State Medical University, Ministry of Health of Russia; Interregional Clinical Diagnostic Center
Email: fake@neicon.ru
ORCID iD: 0000-0002-0134-1005
49 Butlerova St., Kazan 420012
12А Karbyshevа St., Kazan 420101
Russian FederationR. R. Kovyazina
Duke Kunshan University
Email: fake@neicon.ru
ORCID iD: 0000-0002-6165-3668
8 Duke Avenue, Jiangsu Kunshan 215316
ChinaА. Trondin
Hospital Clínico San Carlos
Email: fake@neicon.ru
ORCID iD: 0000-0002-8046-2533
Calle del Prof Martín Lagos, S/N, Moncloa – Aravaca, Мадрид 28040
SpainА. G. Alekseev
Kazan State Medical University, Ministry of Health of Russia; Interregional Clinical Diagnostic Center
Email: fake@neicon.ru
ORCID iD: 0000-0003-1227-8918
49 Butlerova St., Kazan 420012
12А Karbyshevа St., Kazan 420101
Russian FederationP. B. Kopnin
Carcinogenesis Institute of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-2078-4274
24 Kashirskoe Shosse, Moscow 115522
Russian FederationT. V. Gessel
Kazan State Medical University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0009-0003-4348-9141
49 Butlerova St., Kazan 420012
Russian FederationS. V. Boichuk
Kazan State Medical University, Ministry of Health of Russia; Russian Medical Academy of Continuous Professional Education
Author for correspondence.
Email: boichuksergei@mail.ru
ORCID iD: 0000-0003-2415-1084
Sergei Vasilyevich Boichuk
49 Butlerova St., Kazan 420012
Bld. 1, 2/1 Barricadnaya St., Moscow 125993
Russian FederationReferences
- Barh D., Carpi A., Verm M. et al. Cancer biomarkers: minimal and noninvasive early diagnosis and prognosis. NY: CRC Press, 2014.
- Louis D.N., Perry A., Wesseling P. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23(8):1231–51. doi: 10.1093/neuonc/noab106
- Kobyakov G.L., Bekyashev A.Kh., Golanov A.V. et al. Practical recommendations for the drug treatment of primary tumors of the central nervous system. Zlokachestvennye opuholi = Malignant Tumors 2018;8(3):83–99. (In Russ.). doi: 10.18027/2224-5057-2018-8-3s2-83-99
- Verhaak R.G., Hoadley K.A., Purdom E. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17(1):98–110. doi: 10.1016/j.ccr.2009.12.020
- Ma R., Taphoorn M.J., Plaha P. Advances in the management of glioblastoma. J Neurol Neurosurg Psychiatry 2021;92(10):1103–11. doi: 10.1136/jnnp-2020-325334
- Gens G.P., Sanikovich V.D., Mileyko V.A., Lebedeva A.A. Glioblastoma: a molecular genetic portrait and modern therapeutic strategies for drug treatment. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2021;8(3):60–76. (In Russ.). doi: 10.17650/2313-805X-2021-8-3-60-76
- Rocha Pinheiro S.L., Lemos F.F.B., Marques H.S. et al. Immunotherapy in glioblastoma treatment: Current state and future prospects. World J Clin Oncol 2023;14(4):138–59. doi: 10.5306/wjco.v14.i4.138
- Agosti E., Zeppieri M., De Maria L. et al. Glioblastoma immunotherapy: a systematic review of the present strategies and prospects for advancements. Int J Mol Sci 2023;24(20):15037. doi: 10.3390/ijms242015037
- Coxon A.T., Johanns T.M., Dunn G.P. An innovative immunotherapy vaccine with combination checkpoint blockade as a first line treatment for glioblastoma in the context of current treatments. Mo Med 2020;117(1):45–9.
- Konovalov N.A., Asyutin D.S., Shayhaev E.G. et al. Molecular biomarkers of brain and spinal cord astrocytomas. Acta Naturae 2019;11;2(41);17–27. (In Russ.).
- Kuznetsova N.S., Gurova S.V., Goncharova A.S. et al. Modern approaches to glioblastoma therapy. Yuzhno-Rossijskij onkologicheskij zhurnal = South Russian Journal of Cancer 2023;4(1):52–64. (In Russ.). doi: 10.37748/2686-9039-2023-4-1-6
- Timofeeva S.V., Sitkovskaya A.O., Novikova I.A. et al. Recent achievements in CAR-T cell immunotherapy for glioblastoma treatment. Medical Immunology (Russia) 2021;23(3):483–96. (In Russ.). doi: 10.15789/1563-0625-RAI-2111
- Yang H., Ye D., Guan K.L. et al. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012;18(20):5562–71. doi: 10.1158/1078-0432.CCR-12-1773
- Dang L., White D.W., Gross S. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462(7274):739–44. doi: 10.1038/nature08617
- Noushmehr H., Weisenberger D.J., Diefes K. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010;17(5):510–22. doi: 10.1016/j.ccr.2010.03.017
- Yan H., Parsons D.W., Jin G. et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360(8):765–73. doi: 10.1056/NEJMoa0808710
- Huse J.T., Aldape K.D. The evolving role of molecular markers in the diagnosis and management of diffuse glioma. Clin Cancer Res 2014;20(22):5601–11. doi: 10.1158/1078-0432.CCR-14-0831
- Zou P., Xu H., Chen P. et al. IDH1/IDH2 mutations define the prognosis and molecular profiles of patients with gliomas: a meta-analysis. PLoS One 2013;8(7):e68782. doi: 10.1371/journal.pone.0068782
- Anderson M.D., Gilbert M.R. Clinical discussion of the management of anaplastic oligodendroglioma/oligoastrocytoma (both codeleted and nondeleted). J Natl Compr Canc Netw 2014;12(5):665–72. doi: 10.6004/jnccn.2014.0070
- Jiao Y., Killela P.J., Reitman Z.J. et al. Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012;3(7):709–22. doi: 10.18632/oncotarget.588
- Karsy M., Guan J., Cohen A.L. et al. New molecular considerations for glioma: IDH, ATRX, BRAF, TERT, H3 K27M. Curr Neurol Neurosci Rep 2017;17(2):19. doi: 10.1007/s11910-017-0722-5
- England B., Huang T., Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol 2013;34(4):2063–74. doi: 10.1007/s13277-013-0871-3
- Kamran N., Alghamri M.S., Nunez F.J. et al. Current state and future prospects of immunotherapy for glioma. Immunotherapy 2018;10(4):317–39. doi: 10.2217/imt-2017-0122
- Marumoto T., Saya H. Molecular biology of glioma. Adv Exp Med Biol 2012;746:2–11. doi: 10.1007/978-1-4614-3146-6_1
- Network T.C. Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2013;494(7438):506. doi: 10.1038/nature11903
- Galbraith K., Snuderl M. Molecular pathology of gliomas. Surg pathol clin 2021;14(3):379–86. doi: 10.1016/j.path.2021.05.003
- Halperin E.C., Brady L.W., Wazer D.E. et al. Perez & Brady’s principles and practice of radiation oncology. Lippincott Williams & Wilkins, 2013.
- Ostrom Q.T., Patil N., Cioffi G. et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro Oncol 2020;22(12 Suppl. 2): iv1–96. doi: 10.1093/neuonc/noaa200
- Maire C.L., Ligon K.L. Molecular pathologic diagnosis of epidermal growth factor receptor. Neuro Oncol 2014; 16(Suppl. 8):viii1–6. doi: 10.1093/neuonc/nou294
- Westphal M., Maire C.L., Lamszus K. EGFR as a target for glioblastoma treatment: an unfulfilled promise. CNS Drugs 2017;31(9):723–35. doi: 10.1007/s40263-017-0456-6
- Yamazaki H., Ohba Y., Tamaoki N. et al. A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor receptor gene in human brain tumors. Jpn J Cancer Res 1990;81(8):773–9. doi: 10.1111/j.1349-7006.1990.tb02644.x
- Pearson J.R.D., Regad T. Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2017;2:17040. doi: 10.1038/sigtrans.2017.40
- Orellana L., Thorne A.H., Lema R. et al. Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci USA 2019;116(20):10009–18. doi: 10.1073/pnas.1821442116
- Binder Z.A., Thorne A.H., Bakas S. et al. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer Cell 2018;34(1):163–77.e7. doi: 10.1016/j.ccell.2018.06.006
- Raizer J.J., Giglio P., Hu J. et al. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neurooncol 2016;126(1):185–92. doi: 10.1007/s11060-015-1958-z
- Peereboom D.M., Ahluwalia M.S., Ye X. et al. NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme. Neuro Oncol 2013;15(4):490–6. doi: 10.1093/neuonc/nos322
- Sathornsumetee S., Desjardins A., Vredenburgh J.J. et al. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro Oncol 2010;12(12):1300–10. doi: 10.1093/neuonc/noq099
- Hegi M.E., Diserens A.C., Bady P. et al. Pathway analysis of glioblastoma tissue after preoperative treatment with the EGFR tyrosine kinase inhibitor gefitinib – a phase II trial. Mol Cancer Ther 2011;10(6):1102–12. doi: 10.1158/1535-7163.MCT-11-0048
- Lassman A.B., Pugh S.L., Wang T.J.C. et al. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: a phase III randomized clinical trial. Neuro Oncol 2023;25(2):339–50. doi: 10.1093/neuonc/noac173
- Hasselbalch B., Lassen U., Hansen S. et al. Cetuximab, bevacizumab, and irinotecan for patients with primary glioblastoma and progression after radiation therapy and temozolomide: a phase II trial. Neuro Oncol 2010;12(5):508–16. doi: 10.1093/neuonc/nop063
- McCrea H.J., Ivanidze J., O’Connor A. et al. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial. J Neurosurg Pediatr 2021;28(4):371–9. doi: 10.3171/2021.3.PEDS20738
- Westphal M., Heese O., Steinbach J.P. et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer 2015;51(4):522–32. doi: 10.1016/j.ejca.2014.12.019
- Solomón M.T., Selva J.C., Figueredo J. et al. Radiotherapy plus nimotuzumab or placebo in the treatment of high grade glioma patients: results from a randomized, double blind trial. BMC Cancer 2013;13:299. doi: 10.1186/1471-2407-13-299
- Bagley S.J., Desai A.S., Linette G.P. et al. CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro Oncol 2018;20(11):1429–38. doi: 10.1093/neuonc/noy032
- Lv S., Teugels E., Sadones J. et al. Correlation of EGFR, IDH1 and PTEN status with the outcome of patients with recurrent glioblastoma treated in a phase II clinical trial with the EGFR-blocking monoclonal antibody cetuximab. Int J Oncol 2012;41(3):1029–35. doi: 10.3892/ijo.2012.1539
- Daneshimehr F., Barabadi Z., Abdolahi S. et al. Angiogenesis and its targeting in glioblastoma with focus on clinical approaches. Cell J 2022;24(10):555–68. doi: 10.22074/cellj.2022.8154
- Westermark B. Platelet-derived growth factor in glioblastoma-driver or biomarker? Ups J Med Sci 2014;119(4):298–305. doi: 10.3109/03009734.2014.970304
- Lane R., Cilibrasi C., Chen J. et al. PDGF-R inhibition induces glioblastoma cell differentiation via DUSP1/p38MAPK signalling. Oncogene 2022;41(19):2749–63. doi: 10.1038/s41388-022-02294-x
- Boichuk S., Dunaev P., Galembikova A. et al. Fibroblast growth factor 2 (FGF2) activates vascular endothelial growth factor (VEGF) signaling in gastrointestinal stromal tumors (GIST): an autocrine mechanism contributing to imatinib mesylate (IM) resistance. Cancers (Basel) 2024;16(17):3103. doi: 10.3390/cancers16173103
- Boichuk S., Dunaev P., Skripova V. Unraveling the mechanisms of sensitivity to anti-FGF therapies in imatinib-resistant gastrointestinal stromal tumors (GIST) lacking secondary KIT mutations. Cancers (Basel) 2023;15(22):5354. doi: 10.3390/cancers15225354
- Boichuk S., Galembikova A., Mikheeva E. et al. Inhibition of FGF2-mediated signaling in GIST-promising approach for overcoming resistance to imatinib. Cancers (Basel) 2020;12(6):1674. doi: 10.3390/cancers12061674
- Boichuk S., Dunaev P., Galembikova A. et al. Inhibition of FGFR2-signaling attenuates a homology-mediated DNA repair in GIST and sensitizes them to DNA-topoisomerase II inhibitors. Int J Mol Sci 2020;21(1):352. doi: 10.3390/ijms21010352
- Boichuk S., Galembikova A., Dunaev P. et al. Targeting of FGF-signaling re-sensitizes gastrointestinal stromal tumors (GIST) to imatinib in vitro and in vivo. Molecules 2018;23(10):2643. doi: 10.3390/molecules23102643
- Morrison R.S., Yamaguchi F., Saya H. et al. Basic fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth of human astrocytomas. J Neurooncol 1994;18(3):207–16. doi: 10.1007/BF01328955
- Loilome W., Joshi A.D., ap Rhys C.M. et al. Glioblastoma cell growth is suppressed by disruption of fibroblast growth factor pathway signaling. J Neurooncol 2009;94(3):359–66. doi: 10.1007/s11060-009-9885-5
- Yamaguchi F., Saya H., Bruner J.M., Morrison R.S. Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas. Proc Natl Acad Sci USA 1994;91(2):484–8. doi: 10.1073/pnas.91.2.484
- Jimenez-Pascual A., Hale J.S., Kordowski A. et al. ADAMDEC1 maintains a growth factor signaling loop in cancer stem cells. Cancer Discov 2019;9(11):1574–89. doi: 10.1158/2159-8290.CD-18-1308
- Singh D., Chan J.M., Zoppoli P. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 2012;337(6099):1231–5. doi: 10.1126/science.1220834
- Jimenez-Pascual A., Siebzehnrubl F.A. Fibroblast growth factor receptor functions in glioblastoma. Cells 2019;8(7):715. doi: 10.3390/cells8070715
- Kowalski-Chauvel A., Gouaze-Andersson V., Baricault L. et al. Alpha6-integrin regulates FGFR1 expression through the ZEB1/YAP1 transcription complex in glioblastoma stem cells resulting in enhanced proliferation and stemness. Cancers (Basel) 2019;11(3):406. doi: 10.3390/cancers11030406
- Gouaze-Andersson V., Delmas C., Taurand M. et al. FGFR1 induces glioblastoma radioresistance through the PLCγ/Hif1α pathway. Cancer Res 2016;76(10):3036–44. doi: 10.1158/0008-5472.CAN-15-2058
- Brown N.F., Ng S.M., Brooks C. A phase II open label, randomised study of ipilimumab with temozolomide versus temozolomide alone after surgery and chemoradiotherapy in patients with recently diagnosed glioblastoma: the Ipi-Glio trial protocol. BMC Cancer 2020;20(1):198. doi: 10.1186/s12885-020-6624-y
- Carter T., Shaw H., Cohn-Brown D. et al. Ipilimumab and bevacizumab in glioblastoma. Clin Oncol (R Coll Radiol) 2016;28(10):622–6. doi: 10.1016/j.clon.2016.04.042
- Ellsworth S.G., Grossman S.A. Immunotherapeutic strategies for the treatment of glioma. NY: Academic Press, 2022. Pp. 1–17.
- Singh S., Barik D., Lawrie K. et al. Unveiling novel avenues in mTOR-targeted therapeutics: advancements in glioblastoma treatment. Int J Mol Sci 2023;24(19):14960. doi: 10.3390/ijms241914960
- Hashemi M., Etemad S., Rezaei S. et al. Progress in targeting PTEN/PI3K/Akt axis in glioblastoma therapy: revisiting molecular interactions. Biomed Pharmacother 2023;158:114204. doi: 10.1016/j.biopha.2022.114204
- De Los Reyes Corrales T., Losada-Pérez M., Casas-Tintó S. JNK pathway in CNS pathologies. Int J Mol Sci 2021;22(8):3883. doi: 10.3390/ijms22083883
- Cirotti C., Contadini C., Barilà D. SRC Kinase in glioblastoma news from an old acquaintance. Cancers (Basel) 2020;12(6):1558. doi: 10.3390/cancers12061558
- Ou A., Ott M., Fang D., Heimberger A.B. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers (Basel) 2021;13(3):437. doi: 10.3390/cancers13030437
- Wu W., Klockow J.L., Zhang M. et al. Glioblastoma multiforme (GBM): an overview of current therapies and mechanisms of resistance. Pharmacol Res 2021;171:105780. doi: 10.1016/j.phrs.2021.105780
- Sanmamed M.F., Chen L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation. Cancer J 2014;20(4):256–61. doi: 10.1097/PPO.0000000000000061
- Sharpe A.H., Wherry E.J., Ahmed R., Freeman G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 2007;8(3):239–45. doi: 10.1038/ni1443
- Pesce S., Greppi M., Tabellini G. et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol 2017;139(1):335–46.e3. doi: 10.1016/j.jaci.2016.04.025
- Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. doi: 10.1038/nrc3239
- Ohaegbulam K.C., Assal A., Lazar-Molnar E. et al. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015;21(1):24–33. doi: 10.1016/j.molmed.2014.10.009
- Dong P., Xiong Y., Yue J. et al. Tumor-intrinsic PD-L1 signaling in cancer initiation, development and treatment: beyond immune evasion. Front Oncol 2018;8:386. doi: 10.3389/fonc.2018.00386
- Han Y., Liu D., Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res 2020;10(3):727–42.
- Qian J., Wang C., Wang B. et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: hints for glioma anti-PD-1/ PD-L1 therapy. J Neuroinflammation 2018;15(1):290. doi: 10.1186/s12974-018-1330-2
- Parsa A.T., Waldron J.S., Panner A. et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007;13(1):84–8. doi: 10.1038/nm1517
- Heiland D.H., Haaker G., Delev D. et al. Comprehensive analysis of PD-L1 expression in glioblastoma multiforme. Oncotarget 2017;8(26):42214–25. doi: 10.18632/oncotarget.15031
- Peng H., Li Z., Fu J., Zhou R. Growth and differentiation factor 15 regulates PD-L1 expression in glioblastoma. Cancer Manag Res 2019;11:2653–61. doi: 10.2147/CMAR.S192095
- Shu C., Li Q. Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma. Crit Rev Oncol Hematol 2020;151:102965. doi: 10.1016/j.critrevonc.2020.102965
- Kline C., Liu S.J., Duriseti S. et al. Reirradiation and PD-1 inhibition with nivolumab for the treatment of recurrent diffuse intrinsic pontine glioma: a single-institution experience. J Neurooncol 2018;140(3):629–38. doi: 10.1007/s11060-018-2991-5
- Reardon D.A., Omuro A., Brandes A.A. et al. OS10.3 Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol 2017;19(Suppl. 3):iii21. doi: 10.1093/neuonc/nox036.071
- Reardon D.A., Brandes A.A., Omuro A. et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol 2020;6(7):1003–10. doi: 10.1001/jamaoncol.2020.1024
- Lowther D.E., Weinhold K., Reap E. et al. CBM-06: immune biomarker results from a trial of nivolumab ± ipilimumab in patients with recurrent glioblastoma: CheckMate-143. Neuro Oncol 2015;17(Suppl. 5):v70. doi: 10.1093/neuonc/nov211.06
- Omuro A., Vlahovic G., Baehring J. et al. OS07.3 nivolumab in combination with radiotherapy with or without temozolomide in patients with newly diagnosed glioblastoma: updated results from CheckMate 143. Neuro Oncol 2017;19(Suppl. 3):iii13. doi: 10.1093/neuonc/nox036.044
- Omuro A. Immune-checkpoint inhibitors for glioblastoma: what have we learned? Arq Neuropsiquiatr 2022;80(5 Suppl. 1): 266–9. doi: 10.1590/0004-282X-ANP-2022-S129
- Cloughesy T.F., Mochizuki A.Y., Orpilla J.R. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med 2019;25(3):477–86. doi: 10.1038/s41591-018-0337-7
- Lombardi G., Barresi V., Indraccolo S. et al. Pembrolizumab activity in recurrent high-grade gliomas with partial or complete loss of mismatch repair protein expression: a monocentric, observational and prospective pilot study. Cancers (Basel) 2020;12(8):2283. doi: 10.3390/cancers12082283
- Nayak L., Molinaro A.M., Peters K. et al. Randomized phase II and biomarker study of pembrolizumab plus bevacizumab versus pembrolizumab alone for patients with recurrent glioblastoma. Clin Cancer Res 2021;27(4):1048–57. doi: 10.1158/1078-0432.CCR-20-2500
- Zhao J., Chen A.X., Gartrell R.D. et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med 2019;25(3):462–9. doi: 10.1038/s41591-019-0349-y
- Nayak L., Standifer N., Dietrich J. et al. Circulating immune cell and outcome analysis from the phase II study of PD-L1 blockade with durvalumab for newly diagnosed and recurrent glioblastoma. Clin Cancer Res 2022;28(12):2567–78. doi: 10.1158/1078-0432.CCR-21-4064
- Jacques F.H., Nicholas G., Lorimer I.A.J. et al. Avelumab in newly diagnosed glioblastoma. Neurooncol Adv 2021;3(1):vdab118. doi: 10.1093/noajnl/vdab118
- Awada G., Ben Salama L., De Cremer J. et al. Axitinib plus avelumab in the treatment of recurrent glioblastoma: a stratified, open-label, single-center phase 2 clinical trial (GliAvAx). J Immunother Cancer 2020;8(2):e001146. doi: 10.1136/jitc-2020-001146
- Xu S., Tang L., Li X. et al. Immunotherapy for glioma: current management and future application. Cancer Lett 2020;476:1–12. doi: 10.1016/j.canlet.2020.02.002
- Buchbinder E.I., Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 2016;39(1):98–106. doi: 10.1097/COC.0000000000000239
- Fife B.T., Bluestone J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008;224:166–82. doi: 10.1111/j.1600-065X.2008.00662.x
- Takahashi T., Tagami T., Yamazaki S. et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000;192(2):303–10. doi: 10.1084/jem.192.2.303
- Wing K., Onishi Y., Prieto-Martin P. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322(5899):271–5. doi: 10.1126/science.1160062
- Keir M.E., Butte M.J., Freeman G.J. et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331
- Guo Q., Shen S., Guan G. et al. Cancer cell intrinsic TIM-3 induces glioblastoma progression. iScience 2022;25(11):105329. doi: 10.1016/j.isci.2022.105329
- Harris-Bookman S., Mathios D., Martin A.M. et al. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int J Cancer 2018;143(12):3201–8. doi: 10.1002/ijc.31661
- Yeo J., Ko M., Lee D.H. et al. TIGIT/CD226 axis regulates anti-tumor immunity. Pharmaceuticals (Basel) 2021;14(3):200. doi: 10.3390/ph14030200
- Lucca L.E., Lerner B.A., Park C. et al. Differential expression of the T-cell inhibitor TIGIT in glioblastoma and MS. Neurol Neuroimmunol Neuroinflamm 2020;7(3):e712. doi: 10.1212/NXI.0000000000000712
- Dixon K.O., Schorer M., Nevin J. et al. Functional Anti-TIGIT antibodies regulate development of autoimmunity and antitumor immunity. J Immunol 2018;200(8):3000–7. doi: 10.4049/jimmunol.1700407
- Hung A.L., Maxwell R., Theodros D. et al. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 2018;7(8):e1466769. doi: 10.1080/2162402X.2018.1466769
- Wei S.C., Levine J.H., Cogdill A.P. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 2017;170(6):1120–33.e17. doi: 10.1016/j.cell.2017.07.024
- Borish L.C., Steinke J.W. Cytokines and chemokines. J Allergy Clin Immunol 2003;111(2 Suppl):S460–75. doi: 10.1067/mai.2003.108
- Silk A.W., Margolin K. Cytokine Therapy. Hematol Oncol Clin North Am 2019;33(2):261–74. doi: 10.1016/j.hoc.2018.12.004
- Yamanaka R. Glioma: immunotherapeutic approached. NY: Springer Science + Business Media, 2012.
- Liao W., Lin J.X., Leonard W.J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38(1):13–25. doi: 10.1016/j.immuni.2013.01.004
- Malek T.R., Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010;33(2):153–65. doi: 10.1016/j.immuni.2010.08.004
- Liao W., Lin J.X., Wang L. et al. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 2011;12(6):551–9. doi: 10.1038/ni.2030
- Colombo F., Barzon L., Franchin E. et al. Combined HSV-TK/ IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther 2005;12(10):835–48. doi: 10.1038/sj.cgt.7700851
- Okada H., Lieberman F.S., Walter K.A. et al. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 2007;5:67. doi: 10.1186/1479-5876-5-67
- Weber F., Asher A., Bucholz R. et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol 2003;64(1–2):125–37. doi: 10.1007/BF02700027
- Mut M., Sherman J.H., Shaffrey M.E., Schiff D. Cintredekin besudotox in treatment of malignant glioma. Expert Opin Biol Ther 2008;8(6):805–12. doi: 10.1517/14712598.8.6.805
- Kunwar S., Prados M.D., Chang S.M. et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol 2007;25(7):837–44. doi: 10.1200/JCO.2006.08.1117
- Vogelbaum M.A., Sampson J.H., Kunwar S. et al. Convection-enhanced delivery of cintredekin besudotox (interleukin-13-PE38QQR) followed by radiation therapy with and without temozolomide in newly diagnosed malignant gliomas: phase 1 study of final safety results. Neurosurgery 2007;61(5):1031–7; discussion 1037–8. doi: 10.1227/01.neu.0000303199.77370.9e
- Kunwar S., Chang S., Westphal M. et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol 2010;12(8):871–81. doi: 10.1093/neuonc/nop054
- Pestka S., Krause C.D., Walter M.R. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 2004;202:8–32. doi: 10.1111/j.0105-2896.2004.00204.x
- Bandurska K., Król I., Myga-Nowak M. Interferony: między strukturą a funkcją [Interferons: between structure and function]. Postepy Hig Med Dosw 2014;68:428–40. doi: 10.5604/17322693.1101229
- Ismailova A.A., Rozumbetov R.J., Petrova T.A. et al. The effect of type I interferons: from molecules to the body. Zhurnal teoreticheskoy i klinicheskoy meditsiny = Journal of Theoretical and Clinical Medicine 2018;3:25–31. (In Russ.).
- Schroder K., Hertzog P.J., Ravasi T., Hume D.A. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004;75(2):163–89. doi: 10.1189/jlb.0603252
- Groves M.D., Puduvalli V.K., Gilbert M.R. et al. Two phase II trials of temozolomide with interferon-alpha2b (pegylated and non-pegylated) in patients with recurrent glioblastoma multiforme. Br J Cancer 2009;101(4):615–20. doi: 10.1038/sj.bjc.6605189
- Wakabayashi T., Kayama T., Nishikawa R. et al. A multicenter phase I trial of combination therapy with interferon-β and temozolomide for high-grade gliomas (INTEGRA study): the final report. J Neurooncol 2011;104(2):573–7. doi: 10.1007/s11060-011-0529-1
- Kjellman C., Olofsson S.P., Hansson O. et al. Expression of TGF-beta isoforms, TGF-beta receptors, and SMAD molecules at different stages of human glioma. Int J Cancer 2000;89(3):251–8. doi: 10.1002/1097-0215(20000520)89:3<251::aid-ijc7>3.0.co;2-5
- Schlingensiepen K.H., Schlingensiepen R., Steinbrecher A. et al. Targeted tumor therapy with the TGF-beta 2 antisense compound AP 12009. Cytokine Growth Factor Rev 2006;17(1–2):129–39. doi: 10.1016/j.cytogfr.2005.09.002
- Bogdahn U., Hau P., Stockhammer G. et al. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol 2011;13(1):132–42. doi: 10.1093/neuonc/noq142
- Okamoto Y., Shimizu K., Tamura K. et al. An adoptive immunotherapy of patients with medulloblastoma by lymphokine-activated killer cells (LAK). Acta Neurochir (Wien) 1988;94(1–2): 47–52. doi: 10.1007/BF01406615
- Sankhla S.K., Nadkarni J.S., Bhagwati S.N. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J Neurooncol 1996;27(2):133–40. doi: 10.1007/BF00177476
- Yoshida S., Tanaka R., Takai N., Ono K. Local administration of autologous lymphokine-activated killer cells and recombinant interleukin 2 to patients with malignant brain tumors. Cancer Res 1988;48(17):5011–6.
- Swartz A.M., Batich K.A., Fecci P.E., Sampson J.H. Peptide vaccines for the treatment of glioblastoma. J Neurooncol 2015;123(3):433–40. doi: 10.1007/s11060-014-1676-y
- Sturm D., Bender S., Jones D.T. et al. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014;14(2):92–107. doi: 10.1038/nrc3655
- Elsamadicy A.A., Chongsathidkiet P., Desai R. et al. Prospect of rindopepimut in the treatment of glioblastoma. Expert Opin Biol Ther 2017;17(4):507–13. doi: 10.1080/14712598.2017.1299705
- Sampson J.H., Heimberger A.B., Archer G.E. et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010;28(31):4722–9. doi: 10.1200/JCO.2010.28.6963
- Sampson J.H., Aldape K.D., Archer G.E. et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 2011;13(3):324–33. doi: 10.1093/neuonc/noq157
- Weller M., Butowski N., Tran D.D. et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017;18(10):1373–85. doi: 10.1016/S1470-2045(17)30517-X
- Rampling R., Peoples S., Mulholland P.J. et al. A cancer research UK First time in human phase i trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res 2016;22(19):4776–85. doi: 10.1158/1078-0432.CCR-16-0506
- Johanns T.M., Garfinkle E.A.R., Miller K.E. et al. Integrating multisector molecular characterization into personalized peptide vaccine design for patients with newly diagnosed glioblastoma. Clin Cancer Res 2024;30(13):2729–42. doi: 10.1158/1078-0432.CCR-23-3077
- Schaller T.H., Sampson J.H. Advances and challenges: dendritic cell vaccination strategies for glioblastoma. Expert Rev Vaccines 2017;16(1):27–36. doi: 10.1080/14760584.2016.1218762
- Ardon H., Van Gool S., Lopes I.S. et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol 2010;99(2):261–72. doi: 10.1007/s11060-010-0131-y
- Baldueva I.A. Novik A.V., Efremova N.A. et al. Efficiency of treatment of primary tumors of the central nervous system with autologous dendritic cell vaccine CaTeVac. Voprosy Onkologii = Oncology Issues 2022;Appendix 3:157 (In Russ.).
- Kikuchi T., Akasaki Y., Abe T. et al. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 2004;27(6):452–9. doi: 10.1097/00002371-200411000-00005
- Yu J.S., Liu G., Ying H. et al. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004;64(14):4973–9. doi: 10.1158/0008-5472.CAN-03-3505
- S.A. Kulyova S.A., Borokshinova K.M., Baldueva I.A. et al. Experience of using a multitargeted antitumor vaccine in a child with diffuse midline glioma, H3 K27M-mutant. Voprosy onkologii = Oncology Issues 2023;69(3):555–64. (In Russ.). doi: 10.37469/0507-3758-2023-69-3-555-564
- Ridolfi L., Gurrieri L., Riva N. et al. First step results from a phase II study of a dendritic cell vaccine in glioblastoma patients (CombiG-vax). Front Immunol 2024;15:1404861. doi: 10.3389/fimmu.2024.1404861
- Yu J.X., Upadhaya S., Tatake R. et al. Cancer cell therapies: the clinical trial landscape. Nat Rev Drug Discov 2020;19(9):583–4. doi: 10.1038/d41573-020-00099-9
- Lin H., Cheng J., Mu W. et al. Advances in universal CAR-T cell therapy. Front Immunol 2021;12:744823. doi: 10.3389/fimmu.2021.744823
- Labanieh L., Majzner R.G., Mackall C.L. Programming CAR-T cells to kill cancer. Nat Biomed Eng 2018;2(6):377–91. doi: 10.1038/s41551-018-0235-9
- Kochenderfer J.N., Wilson W.H., Janik J.E. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116(20):4099–102. doi: 10.1182/blood-2010-04-281931
- Qazi M.A., Vora P., Venugopal C. et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol 2017;28(7):1448–56. doi: 10.1093/annonc/mdx169
- Hao C., Parney I.F., Roa W.H. et al. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 cytokine dysregulation. Acta Neuropathol 2002;103(2):171–8. doi: 10.1007/s004010100448
- Mirzaei R., Sarkar S., Yong V.W. T cell exhaustion in glioblastoma: intricacies of immune checkpoints. Trends Immunol 2017;38(2):104–15. PMID: 27964820. doi: 10.1016/j.it.2016.11.005
- Zhu C., Mustafa D., Zheng P.P. et al. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro Oncol 2017;19(5):648–59. doi: 10.1093/neuonc/now251
- Li L., Zhu X., Qian Y. et al. Chimeric antigen receptor T-cell therapy in glioblastoma: current and future. Front Immunol 2020;11:594271. doi: 10.3389/fimmu.2020.594271
- Karschnia P., Teske N., Thon N. et al. Chimeric antigen receptor T cells for glioblastoma: current concepts, challenges, and future perspectives. Neurology 2021;97(5):218–30. doi: 10.1212/WNL.0000000000012193
- Brown C.E., Alizadeh D., Starr R. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016;375(26):2561–9. doi: 10.1056/NEJMoa1610497
- Ahmed N., Brawley V., Hegde M. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 2017;3(8):1094–101. doi: 10.1001/jamaoncol.2017.0184
- O’Rourke D.M., Nasrallah M.P., Desai A. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 2017;9(399):eaaa0984. doi: 10.1126/scitranslmed.aaa0984
- Maggs L., Cattaneo G., Dal A.E. et al. CAR T cell-based immunotherapy for the treatment of glioblastoma. Front Neurosci 2021;15:662064. doi: 10.3389/fnins.2021.662064
- Keu K.V., Witney T.H., Yaghoubi S. et al. Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 2017;9(373):eaag2196. doi: 10.1126/scitranslmed.aag2196
- Bielamowicz K., Fousek K., Byrd T.T. et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol 2018;20(4):506–18. doi: 10.1093/neuonc/nox182
- Krenciute G., Prinzing B.L., Yi Z. et al. Transgenic expression of IL15 improves antiglioma activity of IL13Rα2-CAR T cells but results in antigen loss variants. Cancer Immunol Res 2017;5(7):571–81. doi: 10.1158/2326-6066.CIR-16-0376
- Lamfers M.L., Grill J., Dirven C.M. et al. Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 2002;62(20):5736–42.
- Lang F.F., Conrad C., Gomez-Manzano C. et al. Phase I study of DNX-2401 (delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 2018;36(14):1419–27. doi: 10.1200/JCO.2017.75.8219
- Chiocca E.A., Abbed K.M., Tatter S. et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10(5):958–66. doi: 10.1016/j.ymthe.2004.07.021
- Alessandrini F., Menotti L., Avitabile E. et al. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019;38(23):4467–79. doi: 10.1038/s41388-019-0737-2
- Markert J.M., Razdan S.N., Kuo H.C. et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014;22(5):1048–55. doi: 10.1038/mt.2014.22
- Desjardins A., Gromeier M., Herndon J.E. et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018;379(2):150–61. doi: 10.1056/NEJMoa1716435
Supplementary files


