Validation of high-throughput sequencing-based test system for detection of microsatellite instability in colorectal cancer samples
https://doi.org/10.17650/2313-805X-2025-12-1-41-52
Abstract
Introduction. Currently in routine clinical practice, standard methods based on polymerase chain reaction (PCR) and immunohistochemical examination are used to determine microsatellite instability (MSI) and deficient mismatch repair system (dMMR). MSI identification using high-throughput sequencing (next generation sequencing, NGS) is of special interest because it allows to analyze a large number of microsatellites and simultaneously study alterations in therapeutically significant genes.
Aim. To validate of amplicon-based NGS panel for analysis of MSI and alterations in clinically significant genes in colorectal cancer.
Materials and methods. High-throughput sequencing for MSI analysis was performed on formalin-fixed paraffinembedded (FFPE) samples from patients with colorectal cancer of any stage using amplicon-based panel “Solo-test Driver” (Russia) which covers 38 genes and 39 short tandem repeats (mononucleotides). As a reference method, 5-loci (BAT25, BAT26, NR21, NR24 and NR27) PCR was used. In NGS, MSI was evaluated based on κmer distribution. Statistical analysis was performed using Cohen’s kappa (κ), Mann-Whitney u test, and Fisher’s exact test.
Results. An amplicon-based NGS panel for analysis of MSI in 39 loci and alterations in 39 genes was developed and validated on 160 archival FFPE samples of colorectal cancer. Per PCR, 42 (26.25 %) samples were MSI-positive, 118 (73.75 %) were MSI-negative. The results of PCR and NGS were concordant in 98.75 % (158/160) cases.
Conclusion. The κ coefficient was 0.97 which demonstrates high concordance of MSI analyses using PCR and the developed NGS-based assay system.
About the Authors
A. A. LebedevaRussian Federation
Alexandra Artemovna Lebedeva
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia;
Bld. 2, 8 Trubetskaya St., Moscow 119991, Russia
A. N. Taraskina
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia
A. I. Kavun
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia
E. V. Belova
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia;
Bld. 2, 8 Trubetskaya St., Moscow 119991, Russia
T. V. Grigor'eva
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia;
Bld. 2, 8 Trubetskaya St., Moscow 119991, Russia
O. A. Kuznetsova
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia;
24 Kashirskoe Shosse, Moscow 115522, Russia
D. A. Kravchuk
Russian Federation
Bld. 3, 8 Sosenskiy Stan, Kommunarka Sosenskoye, Moscow 108814, Russia
L. D. Belyaeva
Russian Federation
Bld. 2, 8 Trubetskaya St., Moscow 119991, Russia
V. E. Nikulin
Russian Federation
24 Kashirskoe Shosse, Moscow 115522, Russia
E. D. Khomenko
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia
V. A. Mileyko
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia
Bld. 2, 8 Trubetskaya St., Moscow 119991, Russia
A. A. Tryakin
Russian Federation
24 Kashirskoe Shosse, Moscow 115522, Russia
M. Yu. Fedyanin
Russian Federation
24 Kashirskoe Shosse, Moscow 115522, Russia;
Bld. 3, 8 Sosenskiy Stan, Kommunarka Sosenskoye, Moscow 108814, Russia;
70 Nizhnyaya Pervomayskaya St., Moscow 105203, Russia
M. V. Ivanov
Russian Federation
Bld. 4, 1A Leninsky Prospekt, Moscow 119049, Russia
Bld. 2, 8 Trubetskaya St., Moscow 119991, Russia
References
1. Baretti M., Le D.T. DNA mismatch repair in cancer. Pharmacol Ther 2018;189:45–62. DOI: 10.1016/j.pharmthera.2018.04.004 2. Ma J., Setton J., Lee N.Y. et al. The therapeutic significance of mutational signatures from DNA repair deficiency in cancer. Nat Commun 2018;9(1):3292. DOI: 10.1038/s41467-018-05228-y
2. Lepore Signorile M., Disciglio V., Di Carlo G. et al. From genetics to histomolecular characterization: an insight into colorectal carcinogenesis in Lynch syndrome. Int J Mol Sci 2021;22(13):6767. DOI: 10.3390/ijms22136767
3. Lower S.S., McGurk M.P., Clark A.G. et al. Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev 2018;49:70–8. DOI: 10.1016/j.gde.2018.03.003
4. Kavun A., Veselovsky E., Lebedeva A. et al. Microsatellite instability: a review of molecular epidemiology and implications for immune checkpoint inhibitor therapy. Cancers 2023;15(8):2288. DOI: 10.3390/cancers15082288
5. Luchini C., Bibeau F., Ligtenberg M.J.L. et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic reviewbased approach. Ann Oncol 2019;30(8):1232–43. DOI: 10.1093/annonc/mdz116
6. Yakushina V., Kavun A., Veselovsky E. et al. Microsatellite Instability detection: the current standards, limitations, and misinterpretations. JCO Precis Oncol 2023;7:e2300010. DOI: 10.1200/po.23.00010
7. Amato M., Franco R., Facchini G. et al. Microsatellite instability: from the implementation of the detection to a prognostic and predictive role in cancers. Int J Mol Sci 2022;23(15):8726. DOI: 10.3390/ijms23158726
8. Umar A., Boland C.R., Terdiman J.P. et al. Revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 2004;96(4):261–8. DOI: 10.1093/jnci/djh034
9. Goel A., Nagasaka T., Hamelin R. et al. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS One 2010;5(2):e9393. DOI: 10.1371/journal.pone.0009393
10. Coelho H., Jones-Hughes T., Snowsill T. et al. A systematic review of test accuracy studies evaluating molecular micro-satellite instability testing for the detection of individuals with Lynch syndrome. BMC Cancer 2017;17(1):836. DOI: 10.1186/s12885-017-3820-5
11. Parente P., Grillo F., Vanoli A. et al. The day-to-day practice of MMR and MSI assessment in colorectal adenocarcinoma: what we know and what we still need to explore. Dig Dis 2023;41(5):746–56. DOI: 10.1159/000531003
12. Ukkola I., Nummela P., Kero M., Ristimäki A. Diagnostic performance of Idylla MSI test in colorectal cancer biopsies. Diagn Pathol 2023;18(1):39. DOI: 10.1186/s13000-023-01328-6
13. Cohen R., Hain E., Buhard O. et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol 2019;5(4):551–5. DOI: 10.1001/jamaoncol.2018.4942
14. Shia J. The diversity of tumours with microsatellite instability: molecular mechanisms and impact upon microsatellite instability testing and mismatch repair protein immunohistochemistry. Histopathology 2020;78(4):485–97. DOI: 10.1111/his.14271
15. Cortes-Ciriano I., Lee S., Park W.Y. et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun 2017;8(1):15180. DOI: 10.1038/ncomms15180
16. Yang R.K., Chen H., Roy-Chowdhuri S. et al. Clinical testing for mismatch repair in neoplasms using multiple laboratory methods. Cancers 2022;14(19):4550. DOI: 10.3390/cancers14194550
17. Kim T.M., Laird P.W., Park P.J. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 2013;155(4):858–68. DOI: 10.1016/j.cell.2013.10.015
18. Kuismanen S.A., Moisio A.L., Schweizer P. et al. Endometrial and colorectal tumors from patients with hereditary nonpolyposis colon cancer display different patterns of microsatellite instability. Am J Pathol 2002;160(6):1953–8. DOI: 10.1016/s0002-9440(10)61144-3
19. Gilson P., Merlin J.L., Harlé A. Detection of microsatellite instability: state of the art and future applications in circulating tumour DNA (ctDNA). Cancers 2021;13(7):1491. DOI: 10.3390/cancers13071491
20. Ratovomanana T., Cohen R., Svrcek M. et al. Performance of next-generation sequencing for the detection of microsatellite instability in colorectal cancer with deficient DNA mismatch repair. Gastroenterology 2021;161(3):814–26.e7. DOI: 10.1053/j.gastro.2021.05.007
21. Lebedeva A., Belova E., Grigoreva T. et al. MSI detection by NGS using tumor samples and liquid biopsy for patients with solid tumors: a single institution experience. Ann Oncol 2023;8(1):1–55. DOI: 10.1016/esmoop/esmoop101646
22. Cisneros-Villanueva M., Hidalgo-Pérez L., Rios-Romero M. et al. Cell-free DNA analysis in current cancer clinical trials: a review. Br J Cancer 2022;126(3):391–400. DOI: 10.1038/s41416-021-01696-0
23. Yu F., Makrigiorgos A., Leong K.W. et al. Sensitive detection of microsatellite instability in tissues and liquid biopsies: recent developments and updates. Comput Struct Biotechnol J 2021;19:4931–40. DOI: 10.1016/j.csbj.2021.08.037
24. Jia P., Yang X., Guo L. et al. MSIsensor-pro: fast, accurate, and matched-normal-sample-free detection of microsatellite instability. Genomics Proteomics Bioinformatics 2020;18(1):65–71. DOI: 10.1016/j.gpb.2020.02.001
25. Trabucco S.E., Gowen K., Maund S.L. et al. A novel nextgeneration sequencing approach to detecting microsatellite instability and pan-tumor characterization of 1000 microsatellite instability-high cases in 67,000 patient samples. J Mol Diagn 2019;21(6):1053–66. DOI: 10.1016/j.jmoldx.2019.06.011
26. Zhao L., Shan G., Li L. et al. A robust method for the rapid detection of microsatellite instability in colorectal cancer. Oncol Letters 2020;20(2):1982–8. DOI: 10.3892/ol.2020.11702
27. Froyen G., Geerdens E., Berden S. et al. Diagnostic validation of a comprehensive targeted panel for broad mutational and biomarker analysis in solid tumors. Cancers 2022;14(10):2457. DOI: 10.3390/cancers14102457
28. Zheng K., Wan H., Zhang J. et al. A novel NGS-based microsatellite instability (MSI) status classifier with 9 loci for colorectal cancer patients. J Transl Med 2020;18(1):215. DOI: 10.1186/s12967-020-02373-1
29. Gan C., Love C., Beshay V. et al. Applicability of next generation sequencing technology in microsatellite instability testing. Genes 2015;6(1):46–59. DOI: 10.3390/genes6010046
30. Hirotsu Y., Nagakubo Y., Amemiya K. et al. Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types. Clinica Chimica Acta 2020;502:207–13. DOI: 10.1016/j.cca.2019.11.002
31. Yuza K., Nagahashi M., Watanabe S. et al. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017;8(67):112103–15. DOI: 10.18632/oncotarget.22783
32. Goodman A.M., Sokol E.S., Frampton G.M. et al. Microsatellitestable tumors with high mutational burden benefit from immunotherapy. Cancer Immunol Res 2019;7(10):1570–3. DOI: 10.1158/2326-6066.cir-19-0149
33. McGivern A., Wynter C.V.A., Whitehall V.L.J. et al. Promoter hypermethylation frequency and BRAF mutations distinguish hereditary non-polyposis colon cancer from sporadic MSI-H colon cancer. Familial Cancer 2002;3(2):101–7. DOI: 10.1023/b:fame.0000039861.30651.c8
34. Bond C.E., Liu C., Kawamata F. et al. Oncogenic BRAF mutation induces DNA methylation changes in a murine model for human serrated colorectal neoplasia. Epigenetics 2018;13(1):40–8. DOI: 10.1080/15592294.2017.1411446
Review
For citations:
Lebedeva A.A., Taraskina A.N., Kavun A.I., Belova E.V., Grigor'eva T.V., Kuznetsova O.A., Kravchuk D.A., Belyaeva L.D., Nikulin V.E., Khomenko E.D., Mileyko V.A., Tryakin A.A., Fedyanin M.Yu., Ivanov M.V. Validation of high-throughput sequencing-based test system for detection of microsatellite instability in colorectal cancer samples. Advances in Molecular Oncology. 2025;12(1):41-52. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-1-41-52