Epstein–Barr virus and mechanisms of molecular carcinogenesis
- Authors: Molchanov A.D.1,2, Vasilyeva A.S.1, Smirnova K.V.1, Nemtsova M.V.2
-
Affiliations:
- N.N. Blokhin National Medical Research Center of Oncology
- Sechenov University, Ministry of Health of Russia
- Issue: Vol 12, No 2 (2025)
- Pages: 22-34
- Section: REVIEW ARTICLES
- Published: 29.06.2025
- URL: https://umo.abvpress.ru/jour/article/view/782
- DOI: https://doi.org/10.17650/2313-805X-2025-12-2-22-34
- ID: 782
Cite item
Full Text
Abstract
Epstein–Barr virus (EBV) is widespread among the human population and underlies development of numerous malignant neoplasms. The mechanism of EBV-associated carcinogenesis is based on the ability of viral proteins and microRNAs to cause genetic and epigenetic changes which can directly or indirectly stimulate cell growth, inhibit apoptosis, and protect tumor cells from the effects of their microenvironment and the host’s immune response. EBV can lead to development of such malignant neoplasms as Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal, gastric cancer, etc. The review discusses molecular mechanisms of EBV-associated carcinogenesis promoting the virus’s survival in the host’s cells, and regulating oncoproteins.
The results of more than 500 studies from the PubMed, Google Scholar, ResearchGate, Web of Science, RSCI (Russian Science Citation Index) and CyberLeninka databases performed primarily in the last 10 years were analyzed. Literature analysis has shown that EBV has a wide variety of mechanisms to avoid immune surveillance which ensures its lifelong persistence in the human body. Expression of latent proteins (in particular, EBNA1, LMP1, and LMP2A) which modulate the host’s signaling pathways, suppress apoptosis, and alter the immune response, plays the key role in its survival. Additionally, it was established that the type of latency maintained in the infected cells affects the probability of malignant transformation. For example, type II latency is characteristic of the majority of epithelial tumors, while type III is associated with lymphomas. Transition from latent to lytic phase is accompanied by expression of proteins promoting carcinogenesis. In the literature, special attention is paid to the roles of LMP1 and LMP2A oncoproteins which activate PI3K/AKT and JAK/STAT pathways disturbing regulation of cell proliferation and apoptosis. EBV-induced tumors are often characterized by epigenetic changes supporting persistence of the virus and tumor cell growth.
Therefore, EBV is capable of extorting multifactorial effects on the host cell which makes it an important subject of cancer virology. This confirms the necessity of further studies for refinement of molecular mechanisms of carcinogenesis and development of targeted therapeutic approaches to treatment of EBV-associated tumors.
About the authors
A. D. Molchanov
N.N. Blokhin National Medical Research Center of Oncology; Sechenov University, Ministry of Health of Russia
Author for correspondence.
Email: m.artem.aug@gmail.com
ORCID iD: 0000-0001-5229-2285
Artem Dmitrievich Molchanov
24 Kashirskoe Shosse, Moscow 115522
Bld. 2, 8 Trubetskaya St., Moscow 119991
Russian FederationA. S. Vasilyeva
N.N. Blokhin National Medical Research Center of Oncology
Email: fake@neicon.ru
ORCID iD: 0009-0004-0249-4574
24 Kashirskoe Shosse, Moscow 115522
Russian FederationK. V. Smirnova
N.N. Blokhin National Medical Research Center of Oncology
Email: fake@neicon.ru
ORCID iD: 0000-0001-6209-977X
24 Kashirskoe Shosse, Moscow 115522
Russian FederationM. V. Nemtsova
Sechenov University, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-2835-5992
Bld. 2, 8 Trubetskaya St., Moscow 119991
Russian FederationReferences
- Kuri A., Jacobs B.M., Jacobs B.M. et al. Epidemiology of Epstein–Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health 2020;20:1–9. doi: 10.1186/S12889-020-09049-X/TABLES/3
- Ok C.Y., Li L., Young K.H. EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Exp Mol Med 2015;47(1):e132. doi: 10.1038/emm.2014.82
- Shannon-Lowe C., Rickinson A.B., Bell A.I. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci 2017;372(1732):20160271. doi: 10.1098/RSTB.2016.0271
- Lung R.W.M., Tong J.H.M., To K.F. Emerging roles of small Epstein–Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 2013;14(9):17378–409. doi: 10.3390/IJMS140917378
- Farahmand M., Monavari S.H., Shoja Z. et al. Epstein–Barr virus and risk of breast cancer: a systematic review and meta-analysis. Future Oncol 2019;15(24):2873–85. doi: 10.2217/FON-2019-0232
- Shimakage M., Kawahara K., Harada S. et al. Expression of Epstein–Barr virus in renal cell carcinoma. Oncol Rep 2007;18(1):41–6. doi: 10.3892/OR.18.1.41
- Young L.S., Yap L.F., Murray P.G. Epstein–Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 2016;16(12):789–802. doi: 10.1038/nrc.2016.92
- Stomach. Cancer today. Globocan 2022. Available at: https://gco.iarc.who.int/media/ /factsheets/cancers/7-stomach fact-sheet.pdf
- Peterson B.R., Nelson B.L. Nonkeratinizing undifferentiated nasopharyngeal carcinoma. Head Neck Pathol 2013;7(1):73–5. doi: 10.1007/S12105-012-0401-4
- Jemal A., Bray F., Center M.M. et al. Global cancer statistics. CA Cancer J Clin 2011;61(2):69–90. doi: 10.3322/CAAC.20107
- Nasopharynx. Cancer today. Globocan 2022. Available at: https://gco.iarc.who.int/media/globocan/factsheets/cancers/4-nasopharynx-fact-sheet.pdf
- Catalano V., Labianca R., Beretta G.D. et al. Gastric cancer. Crit Rev Oncol Hematol 2009;71(2):127–64. doi: 10.1016/J.CRITREVONC.2009.01.004
- Tavakoli A., Monavari S.H., Solaymani Mohammadi F. et al. Association between Epstein–Barr virus infection and gastric cancer: a systematic review and meta-analysis. BMC Cancer 2020;20(1):493. doi: 10.1186/S12885-020-07013-X
- Camargo M.C., Kim W.H., Chiaravalli A.M. et al. Improved survival of gastric cancer with tumour Epstein–Barr virus positivity: an international pooled analysis. Gut 2014;63(2):236–43. doi: 10.1136/GUTJNL-2013-304531
- Higuchi H., Yamakawa N., Imadome K.I. et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood 2018;131(23):2552–67. doi: 10.1182/BLOOD-2017-07-794529
- Lo A.K.F., Dawson C.W., Lung H.L. et al. The role of EBV-encoded LMP1 in the NPC tumor microenvironment: from function to therapy. Front Oncol 2021;11:640207. doi: 10.3389/FONC.2021.640207/BIBTEX
- Chen W., Xie Y., Wang T. et al. New insights into Epstein–Barr virus-associated tumors: exosomes (review). Oncol Rep 2022;47(1):13. doi: 10.3892/or.2021.8224 18. Machón C., Fàbrega-Ferrer M., Zhou D. et al. Atomic structure of the Epstein–Barr virus portal. Nat Commun 2019;10(1):1–7. doi: 10.1038/s41467-019-11706-8
- Price A.M., Luftig M.A. Dynamic Epstein–Barr virus gene expression on the path to B-cell transformation. Adv Virus Res 2014;88:279–313. doi: 10.1016/B978-0-12-800098-4.00006-4
- Smatti M.K., Al-Sadeq D.W., Ali N.H. et al. Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: an update. Front Oncol 2018;8:211. doi: 10.3389/FONC.2018.00211
- Zhang A., Liu Q., Zhao H. et al. Phenotypic characterization of nanshi oral liquid alters metabolic signatures during disease prevention. Sci Rep 2016;6:1–10. doi: 10.1038/srep19333
- Liang C.L., Chen J.L., Hsu Y.P.P. et al. Epstein–Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem 2002;277(26):23345–57. doi: 10.1074/JBC.M107420200
- Zhao M., Nanbo A., Becnel D. et al. Ubiquitin modification of the Epstein–Barr virus immediate early transactivator Zta. J Virol 2020;94(22):e01298–20. doi: 10.1128/JVI.01298-20
- Soldan S.S., Lieberman P.M. Epstein–Barr virus and multiple sclerosis. Nat Rev Microbiol 2022;21(1):51–64. doi: 10.1038/s41579-022-00770-5
- Long X., Yang Z., Li Y. et al. BRLF1-dependent viral and cellular transcriptomes and transcriptional regulation during EBV primary infection in B lymphoma cells. Genomics 2021;113(4):2591–604. doi: 10.1016/J.YGENO.2021.05.039
- Huang W., Bai L., Tang H. Epstein–Barr virus infection: the micro and macro worlds. Virol J 2023;20(1):1–13. doi: 10.1186/S12985-023-02187-9/TABLES/1
- Murata T., Sugimoto A., Inagaki T. et al. Molecular basis of Epstein–Barr virus latency establishment and lytic reactivation. Viruses 2021;13(12):2344. doi: 10.3390/V13122344
- Middleton T., Sugden B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein–Barr virus replication protein EBNA1. J Virol 1994;68(6):4067–71. doi: 10.1128/JVI.68.6.4067-4071.1994
- Morales-Sanchez A., Fuentes-Panana E.M. Epstein–Barr virus-associated gastric cancer and potential mechanisms of oncogenesis. Curr Cancer Drug Targets 2017;17(6):534–54. doi: 10.2174/1568009616666160926124923
- Ling P.D., Rawlins D.R., Hayward S.D. The Epstein–Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA 1993;90(20):9237–41. doi: 10.1073/PNAS.90.20.9237
- Kaiser C., Laux G., Eick D. et al. The proto-oncogene c-myc is a direct target gene of Epstein–Barr virus nuclear antigen 2. J Virol 1999;73(5):4481–4. doi: 10.1128/JVI.73.5.4481-4484.1999
- Wensing B., Farrell P.J. Regulation of cell growth and death by Epstein–Barr virus. Microbes Infect 2000;2(1):77–84. doi: 10.1016/S1286-4579(00)00282-3
- Sinclair A.J., Palmero I., Peters G. et al. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J 1994;13(14):3321–8. doi: 10.1002/J.1460-2075.1994.TB06634.X
- Szekely L., Selivanova G., Magnusson K.P. et al. EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 1993;90(12):5455–9. doi: 10.1073/PNAS.90.12.5455
- Styles C.T., Paschos K., White R.E. et al. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens 2018;7(1):31. doi: 10.3390/PATHOGENS7010031
- Parker G.A., Touitou R., Allday M.J. Epstein–Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 2000;19(5):700–9. doi: 10.1038/sj.onc.1203327
- Allday M.J., Farrell P.J. Epstein–Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol 1994;68(6):3491–8. doi: 10.1128/JVI.68.6.3491-3498.1994
- Wang L., Ning S. New look of EBV LMP1 signaling landscape. Cancers (Basel) 2021;13(21):5451. doi: 10.3390/CANCERS13215451
- Wang H.Y., Sun L., Li P. et al. Sequence variations of Epstein–Barr virus-encoded small noncoding RNA and latent membrane protein 1 in hematologic tumors in Northern China. Intervirology 2021;64(2):69–80. doi: 10.1159/000510398
- Wang L.W., Jiang S., Gewurz B.E. Epstein–Barr virus LMP1-mediated Oncogenicity. J Virol 2017;91(21):e01718–16. doi: 10.1128/JVI.01718-16
- Wang A., Zhang W., Jin M. et al. Differential expression of EBV proteins LMP1 and BHFR1 in EBV-associated gastric and nasopharyngeal cancer tissues. Mol Med Rep 2016;13(5):4151–8. doi: 10.3892/MMR.2016.5087
- Chen J., Zhang X., Jardetzky T.S. et al. The Epstein–Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion. J Virol 2014;88(20):11686–95. doi: 10.1128/JVI.01349-14
- Zhang B., Kracker S., Yasuda T. et al. Immune surveillance and therapy of lymphomas driven by Epstein–Barr virus protein LMP1 in a mouse model. Cell 2012;148(4):739–51. doi: 10.1016/J.CELL.2011.12.031
- Liu M.T., Chen Y.R., Chen S.C. et al. Epstein–Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 2004;23(14):2531–9. doi: 10.1038/sj.onc.1207375
- Cen O., Longnecker R. Latent membrane protein 2 (LMP2). Curr Top Microbiol Immunol 2015;391:151–80. doi: 10.1007/978-3-319-22834-1_5
- Namba-Fukuyo H., Funata S., Matsusaka K. et al. TET2 functions as a resistance factor against DNA methylation acquisition during Epstein–Barr virus infection. Oncotarget 2016;7(49):81512–26. doi: 10.18632/ONCOTARGET.13130
- Stanland L.J., Luftig M.A. The role of EBV-induced hypermethylation in gastric cancer tumorigenesis. Viruses 2020;12(11):1222. doi: 10.3390/V12111222
- Kohli R.M., Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013;502(7472):472–9. doi: 10.1038/NATURE12750
- Portis T., Longnecker R. Epstein–Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 2004;23(53):8619–28. doi: 10.1038/SJ.ONC.1207905
- Dümpelmann E., Mittendorf H., Benecke B.J. Efficient transcription of the EBER2 gene depends on the structural integrity of the RNA. RNA 2003;9(4):432–42. doi: 10.1261/RNA.2176603
- Kim D.N., Chae H.-S., Oh S.T. et al. Expression of viral microRNAs in Epstein–Barr virus-associated gastric carcinoma. J Virol 2007;81(2):1033–6. doi: 10.1128/JVI.02271-06
- Esquela-Kerscher A., Slack F.J. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 2006;6(4):259–69. doi: 10.1038/NRC1840
- Li W., He C., Wu J. et al. Epstein Barr virus encodes miRNAs to assist host immune escape. J Cancer 2020;11(8):2091–100. doi: 10.7150/JCA.42498
- Zebardast A., Tehrani S.S., Latifi T. et al. Critical review of Epstein–Barr virus microRNAs relation with EBV-associated gastric cancer. J Cell Physiol 2021;236(9):6136–53. doi: 10.1002/JCP.30297
- Tempera I., Klichinsky M., Lieberman P.M. EBV latency types adopt alternative chromatin conformations. PLoS Pathog 2011;7(7):e1002180. doi: 10.1371/JOURNAL.PPAT.1002180
- Frappier L. Epstein–Barr virus: current questions and challenges. Tumour Virus Res 2021;12:200218. doi: 10.1016/J.TVR.2021.200218
- Yin H., Qu J., Peng Q. et al. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2019;208(5):573–83. doi: 10.1007/S00430-018-0570-1
- Luo Y., Liu Y., Wang C. et al. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int 2021;21(1):1–11. doi: 10.1186/S12935-021-01793-3/FIGURES/6
- Moon S.H., Park N.S., Noh M.H. et al. Olaparib-induced apoptosis through EBNA1-ATR-p38 MAPK signaling pathway in Epstein–Barr virus-positive gastric cancer cells. Anticancer Res 2022;42(1):555–63. doi: 10.21873/ANTICANRES.15513
- Hoeger B., Serwas N.K., Boztug K. Human NF-κB1 haploinsufficiency and Epstein–Barr virus-induced disease-molecular mechanisms and consequences. Front Immunol 2018;8:325993. doi: 10.3389/FIMMU.2017.01978/BIBTEX
- Zhang Y., Liu W., Zhang W. et al. Constitutive activation of the canonical NF-κB signaling pathway in EBV-associated gastric carcinoma. Virology 2019;532:1–10. doi: 10.1016/J.VIROL.2019.03.019
- Chen J. Roles of the PI3K/Akt pathway in Epstein–Barr irus-induced cancers and therapeutic implications. World J Virol 2012;1(6):154–61. doi: 10.5501/wjv.v1.i6.154
- Li H., Zhu J., He M. et al. Marek’s disease virus activates the PI3K/Akt pathway through interaction of its protein Meq with the P85 subunit of PI3K to promote viral replication. Front Microbiol 2018;9:2547. doi: 10.3389/FMICB.2018.02547/BIBTEX
- El-Sharkawy A., Al Zaidan L., Malki A. Epstein–Barr virus-associated malignancies: roles of viral oncoproteins in carcinogenesis. Front Oncol 2018;8:380969. doi: 10.3389/FONC.2018.00265/BIBTEX
- Li D.K., Chen X.R., Wang L.N. et al. Epstein–Barr virus induces lymphangiogenesis and lympth node metastasis via upregulation of VEGF-C in nasopharyngeal carcinoma. Mol Cancer Res 2022;20(1):161–75. doi: 10.1158/1541-7786.MCR-21-0164
- Ghose S., Roy S., Ghosh V. et al. The plasma EBV DNA load with IL-6 and VEGF levels as predictive and prognostic biomarker in nasopharyngeal carcinoma. Virology J 2024;21(1):1–10. doi: 10.1186/S12985-024-02473-0/FIGURES/4
- Yang H.J., Huang T.J., Yang C.F. et al. Comprehensive profiling of Epstein–Barr virus-encoded miRNA species associated with specific latency types in tumor cells. Virol J 2013;10:1–13. doi: 10.1186/1743-422X-10-314/TABLES/2
- Ho J.W.Y., Li L., Wong K.Y. et al. Comprehensive profiling of EBV gene expression and promoter methylation reveals latency II viral infection and sporadic abortive lytic activation in peripheral T-cell lymphomas. Viruses 2023;15(2):423. doi: 10.3390/V15020423
- Yoshioka M., Kikuta H., Ishiguro N. et al. Latency pattern of Epstein–Barr virus and methylation status in Epstein–Barr virus associated hemophagocytic syndrome. J Med Virol 2003;70(3):410–9. doi: 10.1002/JMV.10411
- Bergbauer M., Kalla M., Schmeinck A. et al. CpG-methylation regulates a class of Epstein–Barr virus promoters. PLoS Pathog 2010;6(9):e1001114. doi: 10.1371/JOURNAL.PPAT.1001114
- Sinclair A.J. Could changing the DNA methylation landscape promote the destruction of Epstein–Barr virus-associated cancers? Front Cell Infect Microbiol 2021;11:695093. doi: 10.3389/FCIMB.2021.695093/BIBTEX
- Taylor G.S., Long H.M., Brooks J.M. et al. The immunology of Epstein–Barr virus-induced disease. Annu Rev Immunol 2015;33: 787–821. doi: 10.1146/ANNUREV-IMMUNOL-032414-112326
- Matsusaka K., Funata S., Fukuyo M. et al. Epstein–Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J Pathol 2017;242(4):391–9. doi: 10.1002/PATH.4909
- Gao X., Yang H.X., Cheng S. et al. Epigenetic regulation of Epstein–Barr virus: from bench to bedside. Clin Translat Disc 2024;4:e357. doi: 10.1002/CTD2.357
- Li L., Ma B.B.Y., Chan A.T.C. et al. Epstein–Barr virus-induced epigenetic pathogenesis of viral-associated lymphoepithelioma-like carcinomas and natural killer/T-cell lymphomas. Pathogens 2018;7(3):63. doi: 10.3390/PATHOGENS7030063
- Murata T., Kondo Y., Sugimoto A. et al. Epigenetic histone modification of Epstein–Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol 2012;86(9):4752–61. doi: 10.1128/JVI.06768-11
- Torne A.S., Robertson E.S. Epigenetic mechanisms in latent Epstein–Barr virus infection and associated cancers. Cancers 2024;16(5):991. doi: 10.3390/CANCERS16050991
- Kim K.D., Lieberman P.M. Viral remodeling of the 4D nucleome. Exp Mol Med 2024;56(4):799–808. doi: 10.1038/s12276-024-01207-0
- Schaeffner M., Mrozek-Gorska P., Woellmer A. et al. BZLF1 interacts with the chromatin remodeler INO80 promoting escape from latent infections with Epstein–Barr virus. bioRxiv 2018;317354. doi: 10.1101/317354
- Wen Y., Xu H., Han J. et al. How Does Epstein–Barr virus interact with other microbiomes in ebv-driven cancers? Front Cell Infect Microbiol 2022;12:852066. doi: 10.3389/FCIMB.2022.852066/BIBTEX
Supplementary files


