Epstein–Barr virus and mechanisms of molecular carcinogenesis

Cover Page

Cite item

Full Text

Abstract

Epstein–Barr virus (EBV) is widespread among the human population and underlies development of numerous malignant neoplasms. The mechanism of EBV-associated carcinogenesis is based on the ability of viral proteins and microRNAs to cause genetic and epigenetic changes which can directly or indirectly stimulate cell growth, inhibit apoptosis, and protect tumor cells from the effects of their microenvironment and the host’s immune response. EBV can lead to development of such malignant neoplasms as Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal, gastric cancer, etc. The review discusses molecular mechanisms of EBV-associated carcinogenesis promoting the virus’s survival in the host’s cells, and regulating oncoproteins.

The results of more than 500 studies from the PubMed, Google Scholar, ResearchGate, Web of Science, RSCI (Russian Science Citation Index) and CyberLeninka databases performed primarily in the last 10 years were analyzed. Literature analysis has shown that EBV has a wide variety of mechanisms to avoid immune surveillance which ensures its lifelong persistence in the human body. Expression of latent proteins (in particular, EBNA1, LMP1, and LMP2A) which modulate the host’s signaling pathways, suppress apoptosis, and alter the immune response, plays the key role in its survival. Additionally, it was established that the type of latency maintained in the infected cells affects the probability of malignant transformation. For example, type II latency is characteristic of the majority of epithelial tumors, while type III is associated with lymphomas. Transition from latent to lytic phase is accompanied by expression of proteins promoting carcinogenesis. In the literature, special attention is paid to the roles of LMP1 and LMP2A oncoproteins which activate PI3K/AKT and JAK/STAT pathways disturbing regulation of cell proliferation and apoptosis. EBV-induced tumors are often characterized by epigenetic changes supporting persistence of the virus and tumor cell growth.

Therefore, EBV is capable of extorting multifactorial effects on the host cell which makes it an important subject of cancer virology. This confirms the necessity of further studies for refinement of molecular mechanisms of carcinogenesis and development of targeted therapeutic approaches to treatment of EBV-associated tumors.

About the authors

A. D. Molchanov

N.N. Blokhin National Medical Research Center of Oncology; Sechenov University, Ministry of Health of Russia

Author for correspondence.
Email: m.artem.aug@gmail.com
ORCID iD: 0000-0001-5229-2285

Artem Dmitrievich Molchanov

24 Kashirskoe Shosse, Moscow 115522

Bld. 2, 8 Trubetskaya St., Moscow 119991

Russian Federation

A. S. Vasilyeva

N.N. Blokhin National Medical Research Center of Oncology

Email: fake@neicon.ru
ORCID iD: 0009-0004-0249-4574

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

K. V. Smirnova

N.N. Blokhin National Medical Research Center of Oncology

Email: fake@neicon.ru
ORCID iD: 0000-0001-6209-977X

24 Kashirskoe Shosse, Moscow 115522

Russian Federation

M. V. Nemtsova

Sechenov University, Ministry of Health of Russia

Email: fake@neicon.ru
ORCID iD: 0000-0002-2835-5992

Bld. 2, 8 Trubetskaya St., Moscow 119991

Russian Federation

References

  1. Kuri A., Jacobs B.M., Jacobs B.M. et al. Epidemiology of Epstein–Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health 2020;20:1–9. doi: 10.1186/S12889-020-09049-X/TABLES/3
  2. Ok C.Y., Li L., Young K.H. EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Exp Mol Med 2015;47(1):e132. doi: 10.1038/emm.2014.82
  3. Shannon-Lowe C., Rickinson A.B., Bell A.I. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci 2017;372(1732):20160271. doi: 10.1098/RSTB.2016.0271
  4. Lung R.W.M., Tong J.H.M., To K.F. Emerging roles of small Epstein–Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 2013;14(9):17378–409. doi: 10.3390/IJMS140917378
  5. Farahmand M., Monavari S.H., Shoja Z. et al. Epstein–Barr virus and risk of breast cancer: a systematic review and meta-analysis. Future Oncol 2019;15(24):2873–85. doi: 10.2217/FON-2019-0232
  6. Shimakage M., Kawahara K., Harada S. et al. Expression of Epstein–Barr virus in renal cell carcinoma. Oncol Rep 2007;18(1):41–6. doi: 10.3892/OR.18.1.41
  7. Young L.S., Yap L.F., Murray P.G. Epstein–Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 2016;16(12):789–802. doi: 10.1038/nrc.2016.92
  8. Stomach. Cancer today. Globocan 2022. Available at: https://gco.iarc.who.int/media/ /factsheets/cancers/7-stomach fact-sheet.pdf
  9. Peterson B.R., Nelson B.L. Nonkeratinizing undifferentiated nasopharyngeal carcinoma. Head Neck Pathol 2013;7(1):73–5. doi: 10.1007/S12105-012-0401-4
  10. Jemal A., Bray F., Center M.M. et al. Global cancer statistics. CA Cancer J Clin 2011;61(2):69–90. doi: 10.3322/CAAC.20107
  11. Nasopharynx. Cancer today. Globocan 2022. Available at: https://gco.iarc.who.int/media/globocan/factsheets/cancers/4-nasopharynx-fact-sheet.pdf
  12. Catalano V., Labianca R., Beretta G.D. et al. Gastric cancer. Crit Rev Oncol Hematol 2009;71(2):127–64. doi: 10.1016/J.CRITREVONC.2009.01.004
  13. Tavakoli A., Monavari S.H., Solaymani Mohammadi F. et al. Association between Epstein–Barr virus infection and gastric cancer: a systematic review and meta-analysis. BMC Cancer 2020;20(1):493. doi: 10.1186/S12885-020-07013-X
  14. Camargo M.C., Kim W.H., Chiaravalli A.M. et al. Improved survival of gastric cancer with tumour Epstein–Barr virus positivity: an international pooled analysis. Gut 2014;63(2):236–43. doi: 10.1136/GUTJNL-2013-304531
  15. Higuchi H., Yamakawa N., Imadome K.I. et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood 2018;131(23):2552–67. doi: 10.1182/BLOOD-2017-07-794529
  16. Lo A.K.F., Dawson C.W., Lung H.L. et al. The role of EBV-encoded LMP1 in the NPC tumor microenvironment: from function to therapy. Front Oncol 2021;11:640207. doi: 10.3389/FONC.2021.640207/BIBTEX
  17. Chen W., Xie Y., Wang T. et al. New insights into Epstein–Barr virus-associated tumors: exosomes (review). Oncol Rep 2022;47(1):13. doi: 10.3892/or.2021.8224 18. Machón C., Fàbrega-Ferrer M., Zhou D. et al. Atomic structure of the Epstein–Barr virus portal. Nat Commun 2019;10(1):1–7. doi: 10.1038/s41467-019-11706-8
  18. Price A.M., Luftig M.A. Dynamic Epstein–Barr virus gene expression on the path to B-cell transformation. Adv Virus Res 2014;88:279–313. doi: 10.1016/B978-0-12-800098-4.00006-4
  19. Smatti M.K., Al-Sadeq D.W., Ali N.H. et al. Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: an update. Front Oncol 2018;8:211. doi: 10.3389/FONC.2018.00211
  20. Zhang A., Liu Q., Zhao H. et al. Phenotypic characterization of nanshi oral liquid alters metabolic signatures during disease prevention. Sci Rep 2016;6:1–10. doi: 10.1038/srep19333
  21. Liang C.L., Chen J.L., Hsu Y.P.P. et al. Epstein–Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem 2002;277(26):23345–57. doi: 10.1074/JBC.M107420200
  22. Zhao M., Nanbo A., Becnel D. et al. Ubiquitin modification of the Epstein–Barr virus immediate early transactivator Zta. J Virol 2020;94(22):e01298–20. doi: 10.1128/JVI.01298-20
  23. Soldan S.S., Lieberman P.M. Epstein–Barr virus and multiple sclerosis. Nat Rev Microbiol 2022;21(1):51–64. doi: 10.1038/s41579-022-00770-5
  24. Long X., Yang Z., Li Y. et al. BRLF1-dependent viral and cellular transcriptomes and transcriptional regulation during EBV primary infection in B lymphoma cells. Genomics 2021;113(4):2591–604. doi: 10.1016/J.YGENO.2021.05.039
  25. Huang W., Bai L., Tang H. Epstein–Barr virus infection: the micro and macro worlds. Virol J 2023;20(1):1–13. doi: 10.1186/S12985-023-02187-9/TABLES/1
  26. Murata T., Sugimoto A., Inagaki T. et al. Molecular basis of Epstein–Barr virus latency establishment and lytic reactivation. Viruses 2021;13(12):2344. doi: 10.3390/V13122344
  27. Middleton T., Sugden B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein–Barr virus replication protein EBNA1. J Virol 1994;68(6):4067–71. doi: 10.1128/JVI.68.6.4067-4071.1994
  28. Morales-Sanchez A., Fuentes-Panana E.M. Epstein–Barr virus-associated gastric cancer and potential mechanisms of oncogenesis. Curr Cancer Drug Targets 2017;17(6):534–54. doi: 10.2174/1568009616666160926124923
  29. Ling P.D., Rawlins D.R., Hayward S.D. The Epstein–Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA 1993;90(20):9237–41. doi: 10.1073/PNAS.90.20.9237
  30. Kaiser C., Laux G., Eick D. et al. The proto-oncogene c-myc is a direct target gene of Epstein–Barr virus nuclear antigen 2. J Virol 1999;73(5):4481–4. doi: 10.1128/JVI.73.5.4481-4484.1999
  31. Wensing B., Farrell P.J. Regulation of cell growth and death by Epstein–Barr virus. Microbes Infect 2000;2(1):77–84. doi: 10.1016/S1286-4579(00)00282-3
  32. Sinclair A.J., Palmero I., Peters G. et al. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J 1994;13(14):3321–8. doi: 10.1002/J.1460-2075.1994.TB06634.X
  33. Szekely L., Selivanova G., Magnusson K.P. et al. EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 1993;90(12):5455–9. doi: 10.1073/PNAS.90.12.5455
  34. Styles C.T., Paschos K., White R.E. et al. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens 2018;7(1):31. doi: 10.3390/PATHOGENS7010031
  35. Parker G.A., Touitou R., Allday M.J. Epstein–Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 2000;19(5):700–9. doi: 10.1038/sj.onc.1203327
  36. Allday M.J., Farrell P.J. Epstein–Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol 1994;68(6):3491–8. doi: 10.1128/JVI.68.6.3491-3498.1994
  37. Wang L., Ning S. New look of EBV LMP1 signaling landscape. Cancers (Basel) 2021;13(21):5451. doi: 10.3390/CANCERS13215451
  38. Wang H.Y., Sun L., Li P. et al. Sequence variations of Epstein–Barr virus-encoded small noncoding RNA and latent membrane protein 1 in hematologic tumors in Northern China. Intervirology 2021;64(2):69–80. doi: 10.1159/000510398
  39. Wang L.W., Jiang S., Gewurz B.E. Epstein–Barr virus LMP1-mediated Oncogenicity. J Virol 2017;91(21):e01718–16. doi: 10.1128/JVI.01718-16
  40. Wang A., Zhang W., Jin M. et al. Differential expression of EBV proteins LMP1 and BHFR1 in EBV-associated gastric and nasopharyngeal cancer tissues. Mol Med Rep 2016;13(5):4151–8. doi: 10.3892/MMR.2016.5087
  41. Chen J., Zhang X., Jardetzky T.S. et al. The Epstein–Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion. J Virol 2014;88(20):11686–95. doi: 10.1128/JVI.01349-14
  42. Zhang B., Kracker S., Yasuda T. et al. Immune surveillance and therapy of lymphomas driven by Epstein–Barr virus protein LMP1 in a mouse model. Cell 2012;148(4):739–51. doi: 10.1016/J.CELL.2011.12.031
  43. Liu M.T., Chen Y.R., Chen S.C. et al. Epstein–Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 2004;23(14):2531–9. doi: 10.1038/sj.onc.1207375
  44. Cen O., Longnecker R. Latent membrane protein 2 (LMP2). Curr Top Microbiol Immunol 2015;391:151–80. doi: 10.1007/978-3-319-22834-1_5
  45. Namba-Fukuyo H., Funata S., Matsusaka K. et al. TET2 functions as a resistance factor against DNA methylation acquisition during Epstein–Barr virus infection. Oncotarget 2016;7(49):81512–26. doi: 10.18632/ONCOTARGET.13130
  46. Stanland L.J., Luftig M.A. The role of EBV-induced hypermethylation in gastric cancer tumorigenesis. Viruses 2020;12(11):1222. doi: 10.3390/V12111222
  47. Kohli R.M., Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013;502(7472):472–9. doi: 10.1038/NATURE12750
  48. Portis T., Longnecker R. Epstein–Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 2004;23(53):8619–28. doi: 10.1038/SJ.ONC.1207905
  49. Dümpelmann E., Mittendorf H., Benecke B.J. Efficient transcription of the EBER2 gene depends on the structural integrity of the RNA. RNA 2003;9(4):432–42. doi: 10.1261/RNA.2176603
  50. Kim D.N., Chae H.-S., Oh S.T. et al. Expression of viral microRNAs in Epstein–Barr virus-associated gastric carcinoma. J Virol 2007;81(2):1033–6. doi: 10.1128/JVI.02271-06
  51. Esquela-Kerscher A., Slack F.J. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 2006;6(4):259–69. doi: 10.1038/NRC1840
  52. Li W., He C., Wu J. et al. Epstein Barr virus encodes miRNAs to assist host immune escape. J Cancer 2020;11(8):2091–100. doi: 10.7150/JCA.42498
  53. Zebardast A., Tehrani S.S., Latifi T. et al. Critical review of Epstein–Barr virus microRNAs relation with EBV-associated gastric cancer. J Cell Physiol 2021;236(9):6136–53. doi: 10.1002/JCP.30297
  54. Tempera I., Klichinsky M., Lieberman P.M. EBV latency types adopt alternative chromatin conformations. PLoS Pathog 2011;7(7):e1002180. doi: 10.1371/JOURNAL.PPAT.1002180
  55. Frappier L. Epstein–Barr virus: current questions and challenges. Tumour Virus Res 2021;12:200218. doi: 10.1016/J.TVR.2021.200218
  56. Yin H., Qu J., Peng Q. et al. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2019;208(5):573–83. doi: 10.1007/S00430-018-0570-1
  57. Luo Y., Liu Y., Wang C. et al. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int 2021;21(1):1–11. doi: 10.1186/S12935-021-01793-3/FIGURES/6
  58. Moon S.H., Park N.S., Noh M.H. et al. Olaparib-induced apoptosis through EBNA1-ATR-p38 MAPK signaling pathway in Epstein–Barr virus-positive gastric cancer cells. Anticancer Res 2022;42(1):555–63. doi: 10.21873/ANTICANRES.15513
  59. Hoeger B., Serwas N.K., Boztug K. Human NF-κB1 haploinsufficiency and Epstein–Barr virus-induced disease-molecular mechanisms and consequences. Front Immunol 2018;8:325993. doi: 10.3389/FIMMU.2017.01978/BIBTEX
  60. Zhang Y., Liu W., Zhang W. et al. Constitutive activation of the canonical NF-κB signaling pathway in EBV-associated gastric carcinoma. Virology 2019;532:1–10. doi: 10.1016/J.VIROL.2019.03.019
  61. Chen J. Roles of the PI3K/Akt pathway in Epstein–Barr irus-induced cancers and therapeutic implications. World J Virol 2012;1(6):154–61. doi: 10.5501/wjv.v1.i6.154
  62. Li H., Zhu J., He M. et al. Marek’s disease virus activates the PI3K/Akt pathway through interaction of its protein Meq with the P85 subunit of PI3K to promote viral replication. Front Microbiol 2018;9:2547. doi: 10.3389/FMICB.2018.02547/BIBTEX
  63. El-Sharkawy A., Al Zaidan L., Malki A. Epstein–Barr virus-associated malignancies: roles of viral oncoproteins in carcinogenesis. Front Oncol 2018;8:380969. doi: 10.3389/FONC.2018.00265/BIBTEX
  64. Li D.K., Chen X.R., Wang L.N. et al. Epstein–Barr virus induces lymphangiogenesis and lympth node metastasis via upregulation of VEGF-C in nasopharyngeal carcinoma. Mol Cancer Res 2022;20(1):161–75. doi: 10.1158/1541-7786.MCR-21-0164
  65. Ghose S., Roy S., Ghosh V. et al. The plasma EBV DNA load with IL-6 and VEGF levels as predictive and prognostic biomarker in nasopharyngeal carcinoma. Virology J 2024;21(1):1–10. doi: 10.1186/S12985-024-02473-0/FIGURES/4
  66. Yang H.J., Huang T.J., Yang C.F. et al. Comprehensive profiling of Epstein–Barr virus-encoded miRNA species associated with specific latency types in tumor cells. Virol J 2013;10:1–13. doi: 10.1186/1743-422X-10-314/TABLES/2
  67. Ho J.W.Y., Li L., Wong K.Y. et al. Comprehensive profiling of EBV gene expression and promoter methylation reveals latency II viral infection and sporadic abortive lytic activation in peripheral T-cell lymphomas. Viruses 2023;15(2):423. doi: 10.3390/V15020423
  68. Yoshioka M., Kikuta H., Ishiguro N. et al. Latency pattern of Epstein–Barr virus and methylation status in Epstein–Barr virus associated hemophagocytic syndrome. J Med Virol 2003;70(3):410–9. doi: 10.1002/JMV.10411
  69. Bergbauer M., Kalla M., Schmeinck A. et al. CpG-methylation regulates a class of Epstein–Barr virus promoters. PLoS Pathog 2010;6(9):e1001114. doi: 10.1371/JOURNAL.PPAT.1001114
  70. Sinclair A.J. Could changing the DNA methylation landscape promote the destruction of Epstein–Barr virus-associated cancers? Front Cell Infect Microbiol 2021;11:695093. doi: 10.3389/FCIMB.2021.695093/BIBTEX
  71. Taylor G.S., Long H.M., Brooks J.M. et al. The immunology of Epstein–Barr virus-induced disease. Annu Rev Immunol 2015;33: 787–821. doi: 10.1146/ANNUREV-IMMUNOL-032414-112326
  72. Matsusaka K., Funata S., Fukuyo M. et al. Epstein–Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J Pathol 2017;242(4):391–9. doi: 10.1002/PATH.4909
  73. Gao X., Yang H.X., Cheng S. et al. Epigenetic regulation of Epstein–Barr virus: from bench to bedside. Clin Translat Disc 2024;4:e357. doi: 10.1002/CTD2.357
  74. Li L., Ma B.B.Y., Chan A.T.C. et al. Epstein–Barr virus-induced epigenetic pathogenesis of viral-associated lymphoepithelioma-like carcinomas and natural killer/T-cell lymphomas. Pathogens 2018;7(3):63. doi: 10.3390/PATHOGENS7030063
  75. Murata T., Kondo Y., Sugimoto A. et al. Epigenetic histone modification of Epstein–Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol 2012;86(9):4752–61. doi: 10.1128/JVI.06768-11
  76. Torne A.S., Robertson E.S. Epigenetic mechanisms in latent Epstein–Barr virus infection and associated cancers. Cancers 2024;16(5):991. doi: 10.3390/CANCERS16050991
  77. Kim K.D., Lieberman P.M. Viral remodeling of the 4D nucleome. Exp Mol Med 2024;56(4):799–808. doi: 10.1038/s12276-024-01207-0
  78. Schaeffner M., Mrozek-Gorska P., Woellmer A. et al. BZLF1 interacts with the chromatin remodeler INO80 promoting escape from latent infections with Epstein–Barr virus. bioRxiv 2018;317354. doi: 10.1101/317354
  79. Wen Y., Xu H., Han J. et al. How Does Epstein–Barr virus interact with other microbiomes in ebv-driven cancers? Front Cell Infect Microbiol 2022;12:852066. doi: 10.3389/FCIMB.2022.852066/BIBTEX

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c)



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.