Вирус Эпштейна–Барр и механизмы молекулярного канцерогенеза

Обложка

Цитировать

Полный текст

Аннотация

Вирус Эпштейна–Барр (ВЭБ) широко распространен среди населения планеты и обусловливает возникновение многих злокачественных новообразований человека. Механизм ВЭБ-ассоциированного канцерогенеза заключается в способности вирусных белков и микроРНк вызывать генетические и эпигенетические изменения, которые могут прямо или косвенно стимулировать клеточный рост, ингибируя апоптоз или защищая опухолевые клетки от влияния, оказываемого на них микроокружением и иммунным ответом хозяина, приводить к развитию таких злокачественных новообразований, как лимфома Беркитта, лимфома Ходжкина, рак носоглотки, желудка и др. В обзоре рассмотрены молекулярные механизмы канцерогенеза, ассоциированного с ВЭБ, способствующие выживанию этого вируса в клетках хозяина и регулирующие онкобелки. проанализированы результаты более 500 исследований, проведенных преимущественно в последние 10 лет, из баз данных PubMed, Google Scholar, ResearchGate, Web of Science, РиНЦ (Российский индекс научного цитирования) и CyberLeninka.

Анализ научной литературы показал, что ВЭБ обладает большим арсеналом механизмов для уклонения от иммунного надзора, что обеспечивает его пожизненную персистенцию в организме человека. ключевую роль в этом играет экспрессия латентных белков (в частности, EBNA1, LMP1 и LMP2A), которые модулируют сигнальные пути клеток хозяина, подавляют апоптоз и изменяют иммунный ответ. Также установлено, что тип латентности, поддерживаемый в инфицированных клетках, влияет на вероятность злокачественной трансформации. Например, латентность II типа характерна для большинства эпителиальных опухолей, тогда как латентность III типа ассоциирована с лимфомами. переход из латентной в литическую фазу сопровождается экспрессией белков, способствующих онкогенезу. Особое внимание в литературе уделяется роли онкопротеинов LMP1 и LMP2A, которые активируют PI3K/AKT и JAK/STAT пути, нарушая регуляцию клеточной пролиферации и апоптоза. ВЭБ-индуцированные опухоли часто характеризуются эпигенетическими изменениями, поддерживающими вирусную персистенцию и рост опухолевых клеток. Таким образом, ВЭБ способен оказывать мультифакторное влияние на клетку-хозяина, что делает его важным объектом изучения в онковирусологии. Это подтверждает необходимость дальнейших исследований для уточнения молекулярных механизмов канцерогенеза и разработки таргетных терапевтических подходов к лечению ВЭБ-ассо циированных опухолей.

Об авторах

А. Д. Молчанов

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)

Автор, ответственный за переписку.
Email: m.artem.aug@gmail.com
ORCID iD: 0000-0001-5229-2285

Артем Дмитриевич Молчанов

115522 Москва, Каширское шоссе, 24

119991 Москва, ул. Трубецкая, 8, стр. 2

Россия

А. С. Васильева

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0009-0004-0249-4574

115522 Москва, Каширское шоссе, 24

Россия

К. В. Смирнова

ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России

Email: fake@neicon.ru
ORCID iD: 0000-0001-6209-977X

115522 Москва, Каширское шоссе, 24

Россия

М. В. Немцова

ФГАОУ ВО Первый Московский государственный медицинский университет им. И.М. Сеченова Минздрава России (Сеченовский Университет)

Email: fake@neicon.ru
ORCID iD: 0000-0002-2835-5992

119991 Москва, ул. Трубецкая, 8, стр. 2

Россия

Список литературы

  1. Kuri A., Jacobs B.M., Jacobs B.M. et al. Epidemiology of Epstein–Barr virus infection and infectious mononucleosis in the United Kingdom. BMC Public Health 2020;20:1–9. doi: 10.1186/S12889-020-09049-X/TABLES/3
  2. Ok C.Y., Li L., Young K.H. EBV-driven B-cell lymphoproliferative disorders: from biology, classification and differential diagnosis to clinical management. Exp Mol Med 2015;47(1):e132. doi: 10.1038/emm.2014.82
  3. Shannon-Lowe C., Rickinson A.B., Bell A.I. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci 2017;372(1732):20160271. doi: 10.1098/RSTB.2016.0271
  4. Lung R.W.M., Tong J.H.M., To K.F. Emerging roles of small Epstein–Barr virus derived non-coding RNAs in epithelial malignancy. Int J Mol Sci 2013;14(9):17378–409. doi: 10.3390/IJMS140917378
  5. Farahmand M., Monavari S.H., Shoja Z. et al. Epstein–Barr virus and risk of breast cancer: a systematic review and meta-analysis. Future Oncol 2019;15(24):2873–85. doi: 10.2217/FON-2019-0232
  6. Shimakage M., Kawahara K., Harada S. et al. Expression of Epstein–Barr virus in renal cell carcinoma. Oncol Rep 2007;18(1):41–6. doi: 10.3892/OR.18.1.41
  7. Young L.S., Yap L.F., Murray P.G. Epstein–Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 2016;16(12):789–802. doi: 10.1038/nrc.2016.92
  8. Stomach. Cancer today. Globocan 2022. Available at: https://gco.iarc.who.int/media/factsheets/cancers/7-stomach-fact-sheet.pdf
  9. Peterson B.R., Nelson B.L. Nonkeratinizing undifferentiated nasopharyngeal carcinoma. Head Neck Pathol 2013;7(1):73–5. doi: 10.1007/S12105-012-0401-4
  10. Jemal A., Bray F., Center M.M. et al. Global cancer statistics. CA Cancer J Clin 2011;61(2):69–90. doi: 10.3322/CAAC.20107
  11. Nasopharynx. Cancer today. Globocan 2022. Available at: https://gco.iarc.who.int/media/globocan/factsheets/cancers/4-nasopharynx-fact-sheet.pdf
  12. Catalano V., Labianca R., Beretta G.D. et al. Gastric cancer. Crit Rev Oncol Hematol 2009;71(2):127–64. doi: 10.1016/J.CRITREVONC.2009.01.004
  13. Tavakoli A., Monavari S.H., Solaymani Mohammadi F. et al. Association between Epstein–Barr virus infection and gastric cancer: a systematic review and meta-analysis. BMC Cancer 2020;20(1):493. doi: 10.1186/S12885-020-07013-X
  14. Camargo M.C., Kim W.H., Chiaravalli A.M. et al. Improved survival of gastric cancer with tumour Epstein–Barr virus positivity: an international pooled analysis. Gut 2014;63(2):236–43. doi: 10.1136/GUTJNL-2013-304531
  15. Higuchi H., Yamakawa N., Imadome K.I. et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma. Blood 2018;131(23):2552–67. doi: 10.1182/BLOOD-2017-07-794529
  16. Lo A.K.F., Dawson C.W., Lung H.L. et al. The role of EBV-encoded LMP1 in the NPC tumor microenvironment: from function to therapy. Front Oncol 2021;11:640207. doi: 10.3389/FONC.2021.640207/BIBTEX
  17. Chen W., Xie Y., Wang T. et al. New insights into Epstein–Barr virus-associated tumors: exosomes (review). Oncol Rep 2022;47(1):13. doi: 10.3892/or.2021.8224 18. Machón C., Fàbrega-Ferrer M., Zhou D. et al. Atomic structure of the Epstein–Barr virus portal. Nat Commun 2019;10(1):1–7. doi: 10.1038/s41467-019-11706-8
  18. Price A.M., Luftig M.A. Dynamic Epstein–Barr virus gene expression on the path to B-cell transformation. Adv Virus Res 2014;88:279–313. doi: 10.1016/B978-0-12-800098-4.00006-4
  19. Smatti M.K., Al-Sadeq D.W., Ali N.H. et al. Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: an update. Front Oncol 2018;8:211. doi: 10.3389/FONC.2018.00211
  20. Zhang A., Liu Q., Zhao H. et al. Phenotypic characterization of nanshi oral liquid alters metabolic signatures during disease prevention. Sci Rep 2016;6:1–10. doi: 10.1038/srep19333
  21. Liang C.L., Chen J.L., Hsu Y.P.P. et al. Epstein–Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem 2002;277(26):23345–57. doi: 10.1074/JBC.M107420200
  22. Zhao M., Nanbo A., Becnel D. et al. Ubiquitin modification of the Epstein–Barr virus immediate early transactivator Zta. J Virol 2020;94(22):e01298–20. doi: 10.1128/JVI.01298-20
  23. Soldan S.S., Lieberman P.M. Epstein–Barr virus and multiple sclerosis. Nat Rev Microbiol 2022;21(1):51–64. doi: 10.1038/s41579-022-00770-5
  24. Long X., Yang Z., Li Y. et al. BRLF1-dependent viral and cellular transcriptomes and transcriptional regulation during EBV primary infection in B lymphoma cells. Genomics 2021;113(4):2591–604. doi: 10.1016/J.YGENO.2021.05.039
  25. Huang W., Bai L., Tang H. Epstein–Barr virus infection: the micro and macro worlds. Virol J 2023;20(1):1–13. doi: 10.1186/S12985-023-02187-9/TABLES/1
  26. Murata T., Sugimoto A., Inagaki T. et al. Molecular basis of Epstein–Barr virus latency establishment and lytic reactivation. Viruses 2021;13(12):2344. doi: 10.3390/V13122344
  27. Middleton T., Sugden B. Retention of plasmid DNA in mammalian cells is enhanced by binding of the Epstein–Barr virus replication protein EBNA1. J Virol 1994;68(6):4067–71. doi: 10.1128/JVI.68.6.4067-4071.1994
  28. Morales-Sanchez A., Fuentes-Panana E.M. Epstein–Barr virus-associated gastric cancer and potential mechanisms of oncogenesis. Curr Cancer Drug Targets 2017;17(6):534–54. doi: 10.2174/1568009616666160926124923
  29. Ling P.D., Rawlins D.R., Hayward S.D. The Epstein–Barr virus immortalizing protein EBNA-2 is targeted to DNA by a cellular enhancer-binding protein. Proc Natl Acad Sci USA 1993;90(20):9237–41. doi: 10.1073/PNAS.90.20.9237
  30. Kaiser C., Laux G., Eick D. et al. The proto-oncogene c-myc is a direct target gene of Epstein–Barr virus nuclear antigen 2. J Virol 1999;73(5):4481–4. doi: 10.1128/JVI.73.5.4481-4484.1999
  31. Wensing B., Farrell P.J. Regulation of cell growth and death by Epstein–Barr virus. Microbes Infect 2000;2(1):77–84. doi: 10.1016/S1286-4579(00)00282-3
  32. Sinclair A.J., Palmero I., Peters G. et al. EBNA-2 and EBNA-LP cooperate to cause G0 to G1 transition during immortalization of resting human B lymphocytes by Epstein–Barr virus. EMBO J 1994;13(14):3321–8. doi: 10.1002/J.1460-2075.1994.TB06634.X
  33. Szekely L., Selivanova G., Magnusson K.P. et al. EBNA-5, an Epstein–Barr virus-encoded nuclear antigen, binds to the retinoblastoma and p53 proteins. Proc Natl Acad Sci USA 1993;90(12):5455–9. doi: 10.1073/PNAS.90.12.5455
  34. Styles C.T., Paschos K., White R.E. et al. The cooperative functions of the EBNA3 proteins are central to EBV persistence and latency. Pathogens 2018;7(1):31. doi: 10.3390/PATHOGENS7010031
  35. Parker G.A., Touitou R., Allday M.J. Epstein–Barr virus EBNA3C can disrupt multiple cell cycle checkpoints and induce nuclear division divorced from cytokinesis. Oncogene 2000;19(5):700–9. doi: 10.1038/sj.onc.1203327
  36. Allday M.J., Farrell P.J. Epstein–Barr virus nuclear antigen EBNA3C/6 expression maintains the level of latent membrane protein 1 in G1-arrested cells. J Virol 1994;68(6):3491–8. doi: 10.1128/JVI.68.6.3491-3498.1994
  37. Wang L., Ning S. New look of EBV LMP1 signaling landscape. Cancers (Basel) 2021;13(21):5451. doi: 10.3390/CANCERS13215451
  38. Wang H.Y., Sun L., Li P. et al. Sequence variations of Epstein–Barr virus-encoded small noncoding RNA and latent membrane protein 1 in hematologic tumors in Northern China. Intervirology 2021;64(2):69–80. doi: 10.1159/000510398
  39. Wang L.W., Jiang S., Gewurz B.E. Epstein–Barr virus LMP1-mediated Oncogenicity. J Virol 2017;91(21):e01718–16. doi: 10.1128/JVI.01718-16
  40. Wang A., Zhang W., Jin M. et al. Differential expression of EBV proteins LMP1 and BHFR1 in EBV-associated gastric and nasopharyngeal cancer tissues. Mol Med Rep 2016;13(5):4151–8. doi: 10.3892/MMR.2016.5087
  41. Chen J., Zhang X., Jardetzky T.S. et al. The Epstein–Barr virus (EBV) glycoprotein B cytoplasmic C-terminal tail domain regulates the energy requirement for EBV-induced membrane fusion. J Virol 2014;88(20):11686–95. doi: 10.1128/JVI.01349-14
  42. Zhang B., Kracker S., Yasuda T. et al. Immune surveillance and therapy of lymphomas driven by Epstein–Barr virus protein LMP1 in a mouse model. Cell 2012;148(4):739–51. doi: 10.1016/J.CELL.2011.12.031
  43. Liu M.T., Chen Y.R., Chen S.C. et al. Epstein–Barr virus latent membrane protein 1 induces micronucleus formation, represses DNA repair and enhances sensitivity to DNA-damaging agents in human epithelial cells. Oncogene 2004;23(14):2531–9. doi: 10.1038/sj.onc.1207375
  44. Cen O., Longnecker R. Latent membrane protein 2 (LMP2). Curr Top Microbiol Immunol 2015;391:151–80. doi: 10.1007/978-3-319-22834-1_5
  45. Namba-Fukuyo H., Funata S., Matsusaka K. et al. TET2 functions as a resistance factor against DNA methylation acquisition during Epstein–Barr virus infection. Oncotarget 2016;7(49):81512–26. doi: 10.18632/ONCOTARGET.13130
  46. Stanland L.J., Luftig M.A. The role of EBV-induced hypermethylation in gastric cancer tumorigenesis. Viruses 2020;12(11):1222. doi: 10.3390/V12111222
  47. Kohli R.M., Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 2013;502(7472):472–9. doi: 10.1038/NATURE12750
  48. Portis T., Longnecker R. Epstein–Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene 2004;23(53):8619–28. doi: 10.1038/SJ.ONC.1207905
  49. Dümpelmann E., Mittendorf H., Benecke B.J. Efficient transcription of the EBER2 gene depends on the structural integrity of the RNA. RNA 2003;9(4):432–42. doi: 10.1261/RNA.2176603
  50. Kim D.N., Chae H.-S., Oh S.T. et al. Expression of viral microRNAs in Epstein–Barr virus-associated gastric carcinoma. J Virol 2007;81(2):1033–6. doi: 10.1128/JVI.02271-06
  51. Esquela-Kerscher A., Slack F.J. Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 2006;6(4):259–69. doi: 10.1038/NRC1840
  52. Li W., He C., Wu J. et al. Epstein Barr virus encodes miRNAs to assist host immune escape. J Cancer 2020;11(8):2091–100. doi: 10.7150/JCA.42498
  53. Zebardast A., Tehrani S.S., Latifi T. et al. Critical review of Epstein–Barr virus microRNAs relation with EBV-associated gastric cancer. J Cell Physiol 2021;236(9):6136–53. doi: 10.1002/JCP.30297
  54. Tempera I., Klichinsky M., Lieberman P.M. EBV latency types adopt alternative chromatin conformations. PLoS Pathog 2011;7(7):e1002180. doi: 10.1371/JOURNAL.PPAT.1002180
  55. Frappier L. Epstein–Barr virus: current questions and challenges. Tumour Virus Res 2021;12:200218. doi: 10.1016/J.TVR.2021.200218
  56. Yin H., Qu J., Peng Q. et al. Molecular mechanisms of EBV-driven cell cycle progression and oncogenesis. Med Microbiol Immunol 2019;208(5):573–83. doi: 10.1007/S00430-018-0570-1
  57. Luo Y., Liu Y., Wang C. et al. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int 2021;21(1):1–11. doi: 10.1186/S12935-021-01793-3/FIGURES/6
  58. Moon S.H., Park N.S., Noh M.H. et al. Olaparib-induced apoptosis through EBNA1-ATR-p38 MAPK signaling pathway in Epstein–Barr virus-positive gastric cancer cells. Anticancer Res 2022;42(1):555–63. doi: 10.21873/ANTICANRES.15513
  59. Hoeger B., Serwas N.K., Boztug K. Human NF-κB1 haploinsufficiency and Epstein–Barr virus-induced disease-molecular mechanisms and consequences. Front Immunol 2018;8:325993. doi: 10.3389/FIMMU.2017.01978/BIBTEX
  60. Zhang Y., Liu W., Zhang W. et al. Constitutive activation of the canonical NF-κB signaling pathway in EBV-associated gastric carcinoma. Virology 2019;532:1–10. doi: 10.1016/J.VIROL.2019.03.019
  61. Chen J. Roles of the PI3K/Akt pathway in Epstein–Barr irus-induced cancers and therapeutic implications. World J Virol 2012;1(6):154–61. doi: 10.5501/wjv.v1.i6.154
  62. Li H., Zhu J., He M. et al. Marek’s disease virus activates the PI3K/Akt pathway through interaction of its protein Meq with the P85 subunit of PI3K to promote viral replication. Front Microbiol 2018;9:2547. doi: 10.3389/FMICB.2018.02547/BIBTEX
  63. El-Sharkawy A., Al Zaidan L., Malki A. Epstein–Barr virus-associated malignancies: roles of viral oncoproteins in carcinogenesis. Front Oncol 2018;8:380969. doi: 10.3389/FONC.2018.00265/BIBTEX
  64. Li D.K., Chen X.R., Wang L.N. et al. Epstein–Barr virus induces lymphangiogenesis and lympth node metastasis via upregulation of VEGF-C in nasopharyngeal carcinoma. Mol Cancer Res 2022;20(1):161–75. doi: 10.1158/1541-7786.MCR-21-0164
  65. Ghose S., Roy S., Ghosh V. et al. The plasma EBV DNA load with IL-6 and VEGF levels as predictive and prognostic biomarker in nasopharyngeal carcinoma. Virology J 2024;21(1):1–10. doi: 10.1186/S12985-024-02473-0/FIGURES/4
  66. Yang H.J., Huang T.J., Yang C.F. et al. Comprehensive profiling of Epstein–Barr virus-encoded miRNA species associated with specific latency types in tumor cells. Virol J 2013;10:1–13. doi: 10.1186/1743-422X-10-314/TABLES/2
  67. Ho J.W.Y., Li L., Wong K.Y. et al. Comprehensive profiling of EBV gene expression and promoter methylation reveals latency II viral infection and sporadic abortive lytic activation in peripheral T-cell lymphomas. Viruses 2023;15(2):423. doi: 10.3390/V15020423
  68. Yoshioka M., Kikuta H., Ishiguro N. et al. Latency pattern of Epstein–Barr virus and methylation status in Epstein–Barr virus associated hemophagocytic syndrome. J Med Virol 2003;70(3):410–9. doi: 10.1002/JMV.10411
  69. Bergbauer M., Kalla M., Schmeinck A. et al. CpG-methylation regulates a class of Epstein–Barr virus promoters. PLoS Pathog 2010;6(9):e1001114. doi: 10.1371/JOURNAL.PPAT.1001114
  70. Sinclair A.J. Could changing the DNA methylation landscape promote the destruction of Epstein–Barr virus-associated cancers? Front Cell Infect Microbiol 2021;11:695093. doi: 10.3389/FCIMB.2021.695093/BIBTEX
  71. Taylor G.S., Long H.M., Brooks J.M. et al. The immunology of Epstein–Barr virus-induced disease. Annu Rev Immunol 2015;33: 787–821. doi: 10.1146/ANNUREV-IMMUNOL-032414-112326
  72. Matsusaka K., Funata S., Fukuyo M. et al. Epstein–Barr virus infection induces genome-wide de novo DNA methylation in non-neoplastic gastric epithelial cells. J Pathol 2017;242(4):391–9. doi: 10.1002/PATH.4909
  73. Gao X., Yang H.X., Cheng S. et al. Epigenetic regulation of Epstein–Barr virus: from bench to bedside. Clin Translat Disc 2024;4:e357. doi: 10.1002/CTD2.357
  74. Li L., Ma B.B.Y., Chan A.T.C. et al. Epstein–Barr virus-induced epigenetic pathogenesis of viral-associated lymphoepithelioma-like carcinomas and natural killer/T-cell lymphomas. Pathogens 2018;7(3):63. doi: 10.3390/PATHOGENS7030063
  75. Murata T., Kondo Y., Sugimoto A. et al. Epigenetic histone modification of Epstein–Barr virus BZLF1 promoter during latency and reactivation in Raji cells. J Virol 2012;86(9):4752–61. doi: 10.1128/JVI.06768-11
  76. Torne A.S., Robertson E.S. Epigenetic mechanisms in latent Epstein–Barr virus infection and associated cancers. Cancers 2024;16(5):991. doi: 10.3390/CANCERS16050991
  77. Kim K.D., Lieberman P.M. Viral remodeling of the 4D nucleome. Exp Mol Med 2024;56(4):799–808. doi: 10.1038/s12276-024-01207-0
  78. Schaeffner M., Mrozek-Gorska P., Woellmer A. et al. BZLF1 interacts with the chromatin remodeler INO80 promoting escape from latent infections with Epstein–Barr virus. bioRxiv 2018;317354. doi: 10.1101/317354
  79. Wen Y., Xu H., Han J. et al. How Does Epstein–Barr virus interact with other microbiomes in ebv-driven cancers? Front Cell Infect Microbiol 2022;12:852066. doi: 10.3389/FCIMB.2022.852066/BIBTEX

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.