Preview

Успехи молекулярной онкологии

Расширенный поиск

МикроРНК-155-5p в патогенезе онкологических заболеваний

https://doi.org/10.17650/2313-805X-2017-4-3-27-36

Полный текст:

Аннотация

К числу наиболее охарактеризованных и активно изучаемых микроРНК, регулирующих процессы, тесно связанные с канцерогенезом, в том числе клеточную дифференцировку, адгезию, миграцию и инвазию опухолевых клеток, метастазирование, апоптоз и иммуносупрессию, относится miR-155. Кроме того, данная микроРНК вовлечена в дифференцировку гемопоэтических клеток, а также в развитие воспалительных реакций. Ассоциация между специфической дерегуляцией экспрессии miR-155 и канцерогенезом подтверждена целым рядом как фундаментальных, так и клинических исследований и обусловлена постранскрипционной регуляцией важнейших генов онкоассоциированных сигнальных путей. Модуляция уровней экспрессии miR-155 связана с возникновением целого ряда лейкозов и лимфом, а также некоторых солидных опухолей. Повышение уровня клеточной и / или циркулирующей miR-155 при некоторых онкологических заболеваниях может служить маркером прогрессирования и лекарственной устойчивости. Кроме того, ингибирование экспрессии miR-155 может оказаться перспективным методом разработки новых подходов к противоопухолевой терапии.

Об авторах

И. Б. Зборовская
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское шоссе, 24.


А. В. Комельков
НИИ канцерогенеза ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России.
Россия
115478 Москва, Каширское шоссе, 24.


Список литературы

1. Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009;136(2):215–33.

2. Iorio M.V., Croce C.M. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2017;9(6):852.

3. Moss T.J., Luo Z., Seviour E.G. et al. Genome-wide perturbations by miRNAs map onto functional cellular pathways, identifying regulators of chromatin modifiers. NPJ Syst Biol Appl 2015;1:15001.

4. Mendell J.T., Olson E.N. MicroRNAs in stress signaling and human disease. Cell 2012;148(6):1172–87.

5. Yu X., Harris S.L., Levine A.J. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res 2006;66(9):4795–801.

6. Takahashi R.U., Prieto-Vila M., Hirona- ka A., Ochiya T. The role of extracellular vesicle microRNAs in cancer biology. Clin Chem Lab Med 2017;55(5):648–56.

7. Чевкина Е., Щербаков А., Журавская А. и др. Экзосомы и передача (эпи)генетической информации опухолевыми клетками. Успехи молекулярной онкологии 2016;2(3):8–20. [Tchevkina E.M., Shcherbakov A.M., Zhuravskaya A.Yu. et al. Exosomes and transfer of (epi)genetic information by tumor cells. Uspekhi molekulyarnoy оnkologii = Advances in Molecular Oncology 2016;2(3):8–20. (In Russ.)].

8. Tili E., Michaille J.J., Croce C.M. MicroRNAs play a central role in molecular dysfunctions linking inflammation with cancer. Immunol Rev 2013;253(1):167–84.

9. Ranganath P. MicroRNA-155 and its role in malignant hematopoiesis. Biomark Insights 2015;10:95–102.

10. Mashima R. Physiological roles of miR-155. Immunology 2015;145(3):323–33.

11. Elton T.S., Selemon H., Elton S.M., Parinandi N.L. Regulation of the MIR155 host gene in physiological and pathological processes. Gene 2013;532(1):1–12.

12. Paladini L., Fabris L., Bottai G. et al. Targeting microRNAs as key modulators of tumor immune response. J Exp Clin Cancer Res 2016;35:103.

13. Higgs G., Slack F. The multiple roles of microRNA-155 in oncogenesis. J Clin Bioinforma 2013;3(1):17.

14. Santos J.C., Brianti M.T., Almeida V.R. et al. Helicobacter pylori infection modulates the expression of miRNAs associated with DNA mismatch repair pathway. Mol Carcinog 2017;56(4):1372–9.

15. Sandhu S.K., Volinia S., Costinean S. et al. miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eµ-miR-155 transgenic mouse model. Proc Natl Acad Sci U S A 2012;109(49):20047–52.

16. Coira I.F., Rufino-Palomares E.E., Romero O.A. et al. Expression inactivation of SMARCA4 by microRNAs in lung tumors. Hum Mol Genet 2015;24(5):1400–9.

17. Thompson R.C., Herscovitch M., Zhao I. et al. NF-kappaB down-regulates expression of the B-lymphoma marker CD10 through a miR-155/PU.1 pathway. J Biol Chem 2011;286(3):1675–82.

18. Liu H., Patel M.R., Prescher J.A. et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 2010;107(42):18115–20.

19. Liu M., Zhou K., Huang Y., Cao Y. The candidate oncogene (MCRS1) promotes the growth of human lung cancer cells via the miR-155-Rb1 pathway. J Exp Clin Cancer Res 2015;34:121.

20. Song H., Li Y., Chen G. et al. Human MCRS2, a cell-cycle-dependent protein, associates with LPTS/PinX1 and reduces the telomere length. Biochem Biophys Res Commun 2004;316(4):1116–23.

21. Tili E., Michaille J.J. Resveratrol, microRNAs, inflammation, and cancer. J Nucleic Acids 2011;2011:102431.

22. Vigorito E., Kohlhaas S., Lu D., Leyland R. miR-155: an ancient regulator of the im mune system. Immunol Rev 2013;253(1):146–57.

23. Ji W., Zhang X., Sun X. et al. miRNA-155 modulates the malignant biological characteristics of NK/T-cell lymphoma cells by targeting FOXO3a gene. J Huazhong Univ Sci Technolog Med Sci 2014;34(6):882–8.

24. Burocchi A., Pittoni P., Tili E. et al. Regulated Expression of miR-155 is Required for iNKT Cell Development. Front Immunol 2015;6:140.

25. Tili E., Michaille J.J., Adair B. et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 2010;31(9):1561–6.

26. Yoshimura A., Ito M., Chikuma S. et al. Negative regulation of cytokine signaling in immunity. Cold Spring Harb Perspect Biol 2017:a028571.

27. Yang S., Li F., Jia S. et al. Early secreted antigen ESAT-6 of Mycobacterium Tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction. Cell Physiol Biochem 2015;35(4):1276–88.

28. Piccinini A.M., Midwood K.S. Endogenous control of immunity against infection: tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep 2012;2(4):914–26.

29. Midwood K.S., Chiquet M., Tucker R.P., Orend G. Tenascin-C at a glance. J Cell Sci 2016;129(23):4321–7.

30. Tili E., Chiabai M., Palmieri D. et al. Quaking and miR-155 interactions in inflammation and leukemogenesis. Oncotarget 2015;6(28):24599–610.

31. Latruffe N., Lançon A., Frazzi R. et al. Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation. Ann N Y Acad Sci 2015;1348(1):97–106.

32. Darbelli L., Richard S. Emerging functions of the quaking RNA-binding proteins and link to human diseases. Wiley Interdiscip Rev RNA 2016;7(3):399–412.

33. Vasilescu C., Dragomir M., Tanase M. et al. Circulating miRNAs in sepsis-A network under attack: an in-silico prediction of the potential existence of miRNA sponges in sepsis. PLoS One 2017;12(8):e0183334.

34. Chen Y., Wang G., Liu Z. et al. Glucocorticoids regulate the proliferation of T cells via miRNA-155 in septic shock. Exp Ther Med 2016;12(6):3723–8.

35. Ma F., Liu F., Ding L. et al. Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol 2017;55(1):1263–73.

36. Edalati Fathabad M., Karimipoor M., Alizadeh S. et al. miR-155 effectively induces apoptosis in K562 Philadelphia positive cell line through upregulation of p27kip1. Bioimpacts 2017;7(2):109–14.

37. Palma C.A., Al Sheikha D., Lim T.K. et al. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia. Mol Cancer 2014;13:79.

38. Xue H., Hua L.M., Guo M., Luo J.M. SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol Rep 2014;32(5):2253–9.

39. Rai D., Kim S.W., McKeller M.R. et al. Targeting of SMAD5 links microRNA-155 to the TGF-beta pathway and lymphomagenesis. Proc Natl Acad Sci U S A 2010;107(7):3111–6.

40. Dagan L.N., Jiang X., Bhatt S. et al. miR-155 regulates HGAL expression and increases lymphoma cell motility. Blood 2012;119(2):513–20.

41. Hou Y., Wang J., Wang X. et al. Appraising microRNA-155 as a noninvasive diagnostic biomarker for cancer detection: a metaanalysis. Medicine (Baltimore) 2016;95(2):e2450.

42. Xu T.P., Zhu C.H., Zhang J. et al. MicroRNA-155 expression has prognostic value in patients with non-small cell lung cancer and digestive system carcinomas. Asian Pac J Cancer Prev 2013;14(12):7085–90.

43. Bertoli G., Cava C., Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015;5(10):1122–43.

44. Mirzaei H., Gholamin S., Shahidsales S. et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2016;53:25–32.

45. Barbano R., Palumbo O., Pasculli B. et al. A miRNA signature for defining aggressive phenotype and prognosis in gliomas. PLoS One 2014;9(10):e108950.

46. Wang F., Zhou J., Zhang Y. et al. The value of microRNA-155 as a prognostic factor for survival in non-small cell lung cancer: a meta-analysis. PLoS One 2015;10(8):e0136889.

47. Xie K., Ma H., Liang C. et al. A functional variant in miR-155 regulation region contributes to lung cancer risk and survival. Oncotarget 2015;6(40):42781–92.

48. Xue X., Liu Y., Wang Y. et al. MiR-21 and MiR-155 promote non-small cell lung cancer progression by downregulating SOCS1, SOCS6, and PTEN. Oncotarget 2016;7(51):84508–19.

49. Slattery M.L., Lundgreen A., Kadlubar S.A. et al. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog 2013;52(2):155–66.

50. Yang M., Shen H., Qiu C. et al. High expression of miR-21 and miR-155 predicts recurrence and unfavourable survival in non-small cell lung cancer. Eur J Cancer 2013;49(3):604–15.

51. van Roosbroeck K., Fanini F., Setoyama T. et al. Combining anti-mir-155 with chemotherapy for the treatment of lung cancers. Clin Cancer Res 2017;23(11):2891–904.

52. Xiang X., Zhuang X., Ju S. et al. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene 2011;30(31):3440–53.

53. Yu D., Lv M., Chen W. et al. Role of miR-155 in drug resistance of breast cancer. Tumor Biol 2015;36(3):1395–401.

54. Johansson J., Berg T., Kurzejamska E. et al. MiR-155-mediated loss of C/EBPβ shifts the TGF-β response from growth inhibition to epithelial-mesenchymal transition, invasion and metastasis in breast cancer. Oncogene 2013;32(50):5614–24.

55. Voortman J., Goto A., Mendiboure J. et al. MicroRNA expression and clinical outcomes in patients treated with adjuvant chemotherapy after complete resection of non-small cell lung carcinoma. Cancer Res 2010;70(21):8288–98.

56. Yu X., Odenthal M., Fries J.W. Exosomes as miRNA Carriers: formation-function future. Int J Mol Sci 2016;17(12).

57. Munagala R., Aqil F., Gupta R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour Biol 2016;37(8):10703–14.

58. Aushev V.N., Zborovskaya I.B., Laktio- nov K.K. et al. Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One 2013;8(10):e78649.

59. Wang S., Cao X., Ding B. et al. The rs767649 polymorphism in the promoter of miR-155 contributes to the decreased risk for cervical cancer in a Chinese population. Gene 2016;595(1):109–14.

60. Ji J., Xu M., Tu J. et al. MiR-155 and its functional variant rs767649 contribute to the susceptibility and survival of hepatocellular carcinoma. Oncotarget 2016;7(37):60303–9.

61. Kong W., He L., Coppola M. et al. MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 2010;285(23):17869–79.

62. Teoh S.L., Das S. The role of MicroRNAs in diagnosis, prognosis, metastasis and resistant cases in breast cancer. Curr Pharm Des 2017;23(12):1845–59.

63. Urbánek P., Klotz L.O. Posttranscriptional regulation of FOXO expression: microRNAs and beyond. Br J Pharmacol 2017;174(12):1514–32.

64. Chen L., Jiang K., Jiang H., Wei P. miR-155 mediates drug resistance in osteosarcoma cells via inducing autophagy. Exp Ther Med 2014;8(2):527–32.

65. Geretto M., Pulliero A., Rosano C. et al. Resistance to cancer chemotherapeutic drugs is determined by pivotal microRNA regulators. Am J Cancer Res 2017;7(6):1350–71.

66. Shah M.Y., Ferrajoli A., Sood A.K. et al. microRNA therapeutics in cancer – an emerging concept. E Bio Medicine 2016;12:34–42.


Для цитирования:


Зборовская И.Б., Комельков А.В. МикроРНК-155-5p в патогенезе онкологических заболеваний. Успехи молекулярной онкологии. 2017;4(3):27-36. https://doi.org/10.17650/2313-805X-2017-4-3-27-36

For citation:


Zborovskaya I.B., Komel’kov A.V. MicroRNA-155-5p in pathogenesis of cancer. Advances in molecular oncology. 2017;4(3):27-36. (In Russ.) https://doi.org/10.17650/2313-805X-2017-4-3-27-36

Просмотров: 160


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2313-805X (Print)
ISSN 2413-3787 (Online)