The diagnostic and therapeutic potential of exosomal proteins in breast cancer
- Authors: Shefer A.A.1,2, Frik Y.A.2, Tamkovich S.N.1,2
-
Affiliations:
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 10, No 2 (2023)
- Pages: 58-69
- Section: REVIEW
- Published: 10.07.2023
- URL: https://umo.abvpress.ru/jour/article/view/541
- DOI: https://doi.org/10.17650/2313-805X-2023-10-2-58-69
- ID: 541
Cite item
Full Text
Abstract
Exosomes are membrane vesicles 30–150 nm in size released by cells upon fusion of multivesicular bodies with the plasma membrane. A distinctive feature of these vesicles is the presence of the surface tetraspanins CD9, CD63, and CD81. The Rab family of small GTPases, including Rab27A and Rab27B, controls various steps in exosome release, including transport of multivesicular bodies and fusion of the multivesicular body to the plasma membrane. It is commonly accepted to date that exosomes are the main carriers of information between cells under physiological conditions, such as mammary development and lactation, and under pathological conditions, such as breast cancer. This review considers the peculiarities of exosome formation, secretion and transport, their composition and role in normal and breast cancer, as well as the prospects for using these vesicles to develop early non-invasive diagnostics and improve the effectiveness of anti-tumor therapy.
About the authors
A. A. Shefer
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: fake@neicon.ru
ORCID iD: 0000-0001-5369-397X
8 Akademika Lavrent’eva Prospekt, Novosibirsk 630090; 2 Pirogova St., Novosibirsk 630090
Russian FederationYa. A. Frik
Novosibirsk State University
Email: fake@neicon.ru
ORCID iD: 0000-0003-0390-6580
2 Pirogova St., Novosibirsk 630090
Russian FederationS. N. Tamkovich
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Author for correspondence.
Email: s.tamkovich@g.nsu.ru
ORCID iD: 0000-0001-7774-943X
Svetlana N. Tamkovich.
8 Akademika Lavrent’eva Prospekt, Novosibirsk 630090; 2 Pirogova St., Novosibirsk 630090
Russian FederationReferences
- Tamkovich S.N., Yunusova N.V., Stakheeva M.N. Isolation and characterization of plasma exosomes of patients with breast cancer and colorectal cancer. Biomeditsinskaya khimiya = Biomedical Chemistry 2017;165–9. (In Russ.). doi: 10.18097/PBMC20176302165
- Schaefer A.A. Exosomes of breast carcinoma: assessment of tumor potential in the in vivo system and identification of proteins involved in tumor dissemination. Bachelor’s final qualifying work. Novosibirsk, 2022. 80 p. (In Russ.).
- Théry C., Witwer K.W., Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7(1):1535750. doi: 10.1080/20013078.2018.1535750
- Kok V.C., Yu C.-C. Cancer-derived exosomes: their role in cancer biology and biomarker development. Int J Nanomedicine 2020;15:8019–36. doi: 10.2147/IJN.S272378
- Triantafyllou A., Gazouli M., Theodoropoulos C. et al. Exosomes in breast cancer management: where do we stand? A literature review. Biol Cell 2022;114(4):109–22. doi: 10.1111/boc.202100081
- Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016;126(4):1208–15. doi: 10.1172/JCI81135
- Bebelman M., Smith M., Pegtel M. et al. Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther 2018;188:1–11. doi: 10.1016/j.pharmthera.2018.02.013
- Tenchov R., Sasso M.J., Wang X. et al. Exosomes – nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics. ACS Nano 2022;16(11):17802–46. doi: 10.1021/acsnano.2c08774
- Huotari J., Helenius A. Endosome maturation. EMBO J 2011;30(17):3481–500. doi: 10.1038/emboj.2011.286
- Ren X., Hurley J.H. VHS domains of ESCRT-0 cooperate in high-avidity binding to polyubiquitinated cargo. EMBO J 2010;29(6):1045–54. doi: 10.1038/emboj.2010.6
- Wollert T., Yang D., Ren X. et al. The ESCRT machinery at a glance. J Cell Sci 2009;122(Pt. 13):2163–6. doi: 10.1242/jcs.029884
- Ostrowski M., Carmo B.N., Krumeich S. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010;12(1):19–30. doi: 10.1038/ncb2000
- Wei D., Zhan W., Gao Y. et al. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res 2021;31(7): 157–77. doi: 10.1038/s41422-020-00409-1
- Trajkovich K., Hsu C., Chiantia S. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319(5867):1244–7. doi: 10.1126/science.1153124
- Nonaka T., Wong D.T.W. Saliva-exosomics in cancer: molecular characterization of cancer-derived exosomes in saliva. Enzymes 2017;42:125–51. doi: 10.1016/bs.enz.2017.08.002
- Zhang J., Lui S.-C., Luo X.-H. et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 2016;30(6):1116–21. doi: 10.1002/jcla.21990
- Tamkovich S.N., Tutanov O.S., Laktionov P.P. Exosomes: generation, structure, transport, biological activity, and diagnostic application. Biochem Suppl Ser A Membr Cell Biol 2016;10(3):163–73. doi: 10.1134/S1990747816020112
- Grigorieva A.E., Tamkovich S.N., Eremina A.V. et al. Exosomes of lacrimal fluid of healthy people: isolation, identification and characterization. Biomeditsinskaya khimiya = Biomedical Chemistry 2016;62(1):99–106. (In Russ.).
- Kim K.-U., Kim W.-H., Jeong C.-H. et al. More than nutrition: therapeutic potential of breast milk-derived exosomes in cancer. Int J Mol Sci 2020;21(19):7327. doi: 10.3390/ijms21197327
- Dong X., Bai X., Ni J. et al. Exosomes and breast cancer drug resistance. Cell Death Dis 2020;11(11):987. doi: 10.1038/s41419-020-03189-z
- Tamkovich S., Tutanov O., Efimenko A. et al. Blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. Curr Mol Med 2019;19(4):273–85. doi: 10.2174/1566524019666190314120532
- Bonifácio V.D.B. Ovarian cancer biomarkers: moving forward in early detection. Adv Exp Med Biol 2020;1219:355–63. doi: 10.1007/978-3-030-34025-4_18
- Kuang Y., Peng C., Dong Y. et al. NADH dehydrogenase subunit 1/4/5 promotes survival of acute myeloid leukemia by mediating specific oxidative phosphorylation. Mol Med Rep 2022;25(6):195. doi: 10.3892/mmr.2022.12711
- Justo B.L., Jasiulionis M.G. Characteristics of TIMP1, CD63, and β1-integrin and the functional impact of their interaction in cancer. Int J Mol Sci 2021;22(17):9319. doi: 10.3390/ijms22179319
- Qin Y., Shembrey C., Smith J. et al. Laminin 521 enhances self-renewal via STAT3 activation and promotes tumor progression in colorectal cancer. Cancer Letters 2020;476:161–9. doi: 10.1016/j.canlet.2020.02.026
- Zhang T., Sun L., Hao Y. et al. ENO1 suppresses cancer cell ferroptosis by degrading the mRNA of iron regulatory protein 1. Nat Cancer 2022;3(1):75–89. doi: 10.1038/s43018-021-00299-1
- Hong J., Guo F., Lu S.-Y. et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021;70(11):2123–37. doi: 10.1136/gutjnl-2020-322780
- Li H.-J., Ke F.-Y., Lin C.-C. et al. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling-driven epithelial-to-mesenchymal transition. Cancer Res 2021;81(15):4094–09. doi: 10.1158/0008-5472.CAN-20-3543
- Park M.K., Zhang L., Min K.-W. et al. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab 2021;33(12):2380–97. doi: 10.1016/j.cmet.2021.11.011
- Lan Z., Yao X., Sun K. et al. The Interaction between lncRNA SNHG6 and hnRNPA1 contributes to the growth of colorectal cancer by enhancing aerobic glycolysis through the regulation of alternative splicing of PKM. Front Oncol 2020;10:363. doi: 10.3389/fonc.2020.00363
- Nie H., Ju H., Fan J. et al. O-GlcNAcylation of PGK1 coordinates glycolysis and TCA cycle to promote tumor growth. Nat Commun 2020;11(1):36. doi: 10.1038/s41467-019-13601-8
- Huang C., Shen Q., Song G. et al. Downregulation of PARVA promotes metastasis by modulating integrin-linked kinase activity and regulating MAPK/ERK and MLC2 signaling in prostate cancer. Transl Androl Urol 2021;10(2):915–28. doi: 10.21037/tau-21-108
- Tong X.-Y., Yang X.-Z., Gao S.-Q. et al. Regulating effect of cytochrome b5 overexpression on human breast cancer cells. Molecules 2022;27(14):4556. doi: 10.3390/molecules27144556
- Laulagnier K., Motta C., Hamdi S. et al. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 2004;380(Pt. 1): 161–71. doi: 10.1042/BJ20031594
- Choi D.-S., Kim D.-K., Kim Y.-K. et al. Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 2013;13(10–11):1554–71. doi: 10.1002/pmic.201200329
- Llorente A., Skotland T., Sylvänne T. et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 2013;1831(7):1302–9. doi: 10.1016/j.bbalip.2013.04.011
- Carayon K., Chaoui K., Ronzier E. et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J Biol Chem 2011;286(39):34426–39. doi: 10.1074/jbc.M111.257444
- Beloribi S., Ristorcelli E., Breuzard G. et al. Exosomal lipids impact notch signaling and induce death of human pancreatic tumoral SOJ-6 cells. PLoS One 2012;7(10):e47480. doi: 10.1371/journal.pone.0047480
- Wang G., Dinkins M., He Q. et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem 2012;287(25):21384–95. doi: 10.1074/jbc.M112.340513
- Rak J. Microparticles in cancer. Semin Thromb Hemost 2010;36(8):888–906. doi: 10.1055/s-0030-1267043
- Balaj L., Lessard R., Cho Y.-J. et al. Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2011;2:180. doi: 10.1038/ncomms1180
- Tutanov O., Shtam T., Tupkin A. et al. Blood plasma exosomes contain circulating DNA in their crown. Diagnostics (Basel) 2022;12(4):854. doi: 10.3390/diagnostics12040854
- Xie Y., Dang W., Zhang S. et al. The role of exosomal noncoding RNAs in cancer. Mol Cancer 2019;18(1):37. doi: 10.1186/s12943-019-0984-4
- Eldh M., Ekstrom K., Valadi H. et al. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoS One 2010;5(12):e15353. doi: 10.1371/journal.pone.0015353
- O’Brien K., Rani S., Corcoran C. et al. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. Eur J Cancer 2013;49(8):1845–59. doi: 10.1016/j.ejca.2013.01.017
- Ding G., Zhou L., Qian Y. et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget 2015;6(30):29877–88. doi: 10.18632/oncotarget.4924
- Ying X., Wu Q., Wu X. et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 2016;7(28):43076–87. doi: 10.18632/oncotarget.9246
- Hood J.L., San R.S., Wickline S.A. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 2011;71(11):3792–801. doi: 10.1158/0008-5472.CAN-10-4455
- Bayerli O.A., Gareev I.F., Pavlov V.N. Exosomal long non-coding RNAs as biomarkers and therapeutic targets in cancer. Kreativnaya khirurgiya i onkologiya = Creative Surgery and Oncology 2019;9(4):297–304. (In Russ.). doi: 10.24060/2076-3093-2019-9-4-297-304
- Harris D.A., Patel S.H., Gucek M. et al. Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One 2015;10(3):e0117495. doi: 10.1371/journal.pone.0117495
- Boucheix C., Duc G.H., Jasmin C. et al. Tetraspanins and malignancy. Expert Rev Mol Med 2001;2001:1–17. doi: 10.1017/S1462399401002381
- Li K., Liu T., Chen J. et al. Survivin in breast cancer-derived exosomes activates fibroblasts by up-regulating SOD1, whose feedback promotes cancer proliferation and metastasis. J Biol Chem 2020;295(40):13737–52. doi: 10.1074/jbc.RA120.013805
- Katoh M., Katoh M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int J Mol Med 2020;45(2):279–97. doi: 10.3892/ijmm.2019.4418
- Yuan X., Qian N., Ling S. et al. Breast cancer exosomes contribute to pre-metastatic niche formation and promote bone metastasis of tumor cells. Theranostics 2021;11(3):1429–45. doi: 10.7150/thno.45351
- Patwardhan S., Mahadik P., Shetty O. et al. ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials 2021;279:121185. doi: 10.1016/j.biomaterials.2021.121185
- Jordan K.R., Hall J.K., Schedin T. et al. Extracellular vesicles from young women’s breast cancer patients drive increased invasion of non-malignant cells via the focal adhesion kinase pathway: a proteomic approach. Breast Cancer Res 2020;22(1):128. doi: 10.1186/s13058-020-01363-x
- Samsonov R.B., Kovalenko I.M., Vasiliev D.A. Stimulation of metastatic activity of breast cancer cells by plasma exosomes. Rossiiskii bioterapevticheskii zhurnal = Russian Biotherapeutic Journal 2016;15(2):6–15. (In Russ.). doi: 10.17650/1726-9784-2016-15-2-6-15
- Ham S., Lima L.G., Chai E.P.Z. et al. Breast cancer-derived exosomes alter macrophage polarization via gp130/STAT3 signaling. Front Immunol 2018;9:871. doi: 10.3389/fimmu.2018.00871
- Mengos A.E., Gastineau D.A., Gustafson M.P. The CD14+HLA-DRlo/neg monocyte: an immunosuppressive phenotype that restrains responses to cancer immunotherapy. Front Immunol 2019;10:1147. doi: 10.3389/fimmu.2019.01147
- Contini P., Ghio M., Merlo A. et al. Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is fas ligand/fas mediated: evidence for the involvement of p56 lck, calcium calmodulin kinase II, and calcium-independent protein kinase C signaling pathways and for NF-κB and NF-AT nuclear translocation. J Immunol 2005;175(11):7244–54. doi: 10.4049/jimmunol.175.11.7244
- Tian X., Shen H., Li Z. et al. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J Hematol Oncol 2019;12(1):84. doi: 10.1186/s13045-019-0772-z
- Farhood B., Najafi M., Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 2019;234(6):8509–21. doi: 10.1002/jcp.27782
- Cameron D., Piccart-Gebhart M.J., Gelber R.D. et al. 11 years’ follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive early breast cancer: final analysis of the HERceptin Adjuvant (HERA) trial. Lancet 2017;389(10075):1195–205. doi: 10.1016/S0140-6736(16)32616-2
- Ciravolo V., Huber V., Ghedind G.C. et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 2012;227(2):658–67. doi: 10.1002/jcp.22773
- Semina S.E., Scherbakov A.M., Vnukova A.A. et al. Exosome-mediated transfer of cancer cell resistance to antiestrogen drugs. Molecules 2018;23(4):829. doi: 10.3390/molecules23040829
- Andreeva O.E., Sorokin D.V., Mikhaevich E.I. et al. Towards unravelling the role of ERα-targeting miRNAs in the exosome-mediated transferring of the hormone resistance. Molecules 2021;26(21):6661. doi: 10.3390/molecules26216661
- Semina S.E., Rudenskaya E.A., Mittenberg A.G. et al. Exosomes and development of cancer cell resistance to metformin: pilot study. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2017;4(3):92–8. (In Russ.). doi: 10.17650/2313-805X-2017-4-3-92-98
- Chanteloup G., Cordonnier M., Isambert N. et al. Monitoring HSP70 exosomes in cancer patients’ follow up: a clinical prospective pilot study. J Extracell Vesicles 2020;9(1):1766192. doi: 10.1080/20013078.2020.1766192
- Melo S.A., Luecke L.B., Kahlert C. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015;523(7559):177–82. doi: 10.1038/nature14581
- Wang X., Zhong W., Bu J. et al. Exosomal protein CD82 as a diagnostic biomarker for precision medicine for breast cancer. Mol Carcinog 2019;58(5):674–85. doi: 10.1002/mc.22960
- Tutanov O., Orlova E., Proskura K. et al. Proteomic analysis of blood exosomes from healthy females and breast cancer patients reveals an association between different exosomal bioactivity on non-tumorigenic epithelial cell and breast cancer cell migration in vitro. Biomolecules 2020;10(4):495. doi: 10.3390/biom10040495
- Tumanov O.S., Bakakina Yu.S., Proskura K.V. et al. Search for proteomic markers of breast cancer in the composition of total blood exosomes. Sibirskij onkologicheskij zhurnal = Siberian Journal of Oncology 2020;19(2):49–61. doi: 10.21294/1814-4861-2020-19-2-49-61
- Sipeng L., Xinya L., Hao P. et al. Proteomic landscape of exosomes reveals the functional contributions of CD151 in triple-negative breast cancer. Mol Cell Proteomics 2021;20:100121. doi: 13.1016/j.mcpro.2021.100121
- Vardaki I., Ceder S., Rutishauser D. et al. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget 2016;7(46):74966–78. doi: 10.18632/oncotarget.11663
- Rupp A.-K., Rupp C., Keller S. et al. Loss of EpCAM expression in breast cancer derived serum exosomes: Role of proteolytic cleavage. Gynecol Oncol 2011;122(2):437–46. doi: 10.1016/j.ygyno.2011.04.035
- Hoshino A., Kim S.H., Bojman L. et al. Extracellular vesicle and particle biomarkers define multiple human cancers. Cell 2020;182(4):1044–61.e18. doi: 10.1016/j.cell.2020.07.009
- Toth B., Nieuwland R., Liebhardt S. et al. Circulating microparticles in breast cancer patients: a comparative analysis with established biomarkers. Anticancer Res 2008;28(2A):1107–12.
- Sancho-Albero M., Navascuеs N., Mendoza G. et al. Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobitechnol 2019;7(1):16. doi: 10.1186/s12951-018-0437-z
- Hazan-Halevy I., Rosenblum D., Weinstein S. et al. Cell-specific uptake of mantle cell lymphoma derived exosomes by malignant and non-malignant B-lymphocytes. Cancer Lett 2015;364(1):59–69. doi: 10.1016/j.canlet.2015.04.026
- Yue S., Ye X., Zhou T. et al. PGRN-/-TAMs-derived exosomes inhibit breast cancer cell invasion and migration and its mechanism exploration. Life Sci 2021;264:118687. doi: 10.1016/j.lfs.2020.118687
- Gong C., Tian J., Wang Z. et al. Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy. J Nanobiotechnology 2019;17(1):93. doi: 10.1186/s12951-019-0526-7
- Yu M., Gai C., Li Z. et al. Targeted exosome-encapsulated erastin induced ferroptosis in triple negative breast cancer cells. Cancer Sci 2019;110(10)3173–82. doi: 10.1111/cas.14181
- Weaver W. J., Zhang J., Rojas J. et al. The application of exosomes in the treatment of triple-negative breast cancer. Front Mol Biosci 2022;9:1022725. doi: 10.3389/fmolb.2022.1022725
- Vakhshiteh F., Atyabi F., Ostad N.S. Mesenchymal stem cell exosomes: a two-edged sword in cancer therapy. Int J Nanomedicine 2019;14:2847–59. doi: 10.2147/IJN.S200036
- Goh J.W., Zou S., Lee K.C. et al. EXOPLEXs: chimeric drug delivery platform from the fusion of cell-derived nanovesicles and liposomes. Biomacromolecules 2018;19(1):22–30. doi: 10.1021/acs.biomac.7b01176
- Katakpwski M., Buller B., Zheng X. et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013;335(1):201–4. doi: 10.1016/j.canlet.2013.02.019
- Bolukbasi F.M., Mizrak A., Ozdener B.G. et al. miR-1289 and “Zipcode”-like sequence enrich mRNAs in microvesicles. Mol Ther Nucleic Acids 2012;1(2):e10. doi: 10.1038/mtna.2011.2
- Riazifar M., Pone J.E., Lotvall J. et al. Stem cell extracellular vesicles: extended messages of regeneration. Annu Rev Pharmacol Toxicol 2017;57:125–54. doi: 10.1146/annurev-pharmtox-061616-030146
- Tian Y., Li S., Song J. et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014;11(3):2383–90. doi: 10.1016/j.biomaterials.2013.11.083
- Naseri Z., Oskuee K.R., Jaafari R.M. et al. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo. Int J Nano-medicine 2018;13:7727–47. doi: 10.2147/IJN.S182384
- Hung E.M., Leonard N.J. Stabilization of exosome-targeting peptides via engineered glycosylation. J Biol Chem 2015;290(13):8166–72. doi: 10.1074/jbc.M114.621383
- Kosaka N., Yoshioka Y., Tominaga N. et al. Dark side of the exosome: the role of the exosome in cancer metastasis and targeting the exosome as a strategy for cancer therapy. Future Oncol 2014;10(4):671–81. doi: 10.2217/fon.13.222
- Nishida-Aoki N., Tominaga N., Takeshita F. et al. Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Mol Ther 2017;25(1):181–91. doi: 10.1016/j.ymthe.2016.10.009
- Baglio R.S., Largerweij T., Perez-Lanzon M. et al. Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res 2017;23(14):3721–33. doi: 10.1158/1078-0432.CCR-16-2726
- Santos M.F., Rappa G., Karbanova J. et al. Anti-human CD9 antibody Fab fragment impairs the internalization of extracellular vesicles and the nuclear transfer of their cargo proteins. J Cell Mol Med 2019;23(6):4408–21. doi: 10.1111/jcmm.14334
- Wei Z., Chen Z., Zhao Y. et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021;275:121000. doi: 10.1016/j.biomaterials.2021.121000
- Tominaga N. Anti-cancer role and therapeutic potential of extracellular vesicles. Cancers (Basel) 2021;13(24):6303. doi: 10.3390/cancers13246303
- Roma-Rodrigues C., Fernandes A.R., Baptista P.V. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int 2014;2014:179486. doi: 10.1155/2014/179486
- Alimirzaie S., Bagherzadeh M., Akbari M.R. Liquid biopsy in breast cancer: a comprehensive review. Clin Genet 2019;95(6):643–60. doi: 10.1111/cge.13514
Supplementary files


