Роль мутаций в гене NF1 в спорадическом канцерогенезе

Обложка

Цитировать

Полный текст

Аннотация

В обзорной статье представлены данные о роли соматической инактивации гена нейрофибромина NF1 в развитии спорадических злокачественных неоплазм. рассмотрена взаимосвязь особенностей опухолевого синдрома при нейрофиброматозе 1-го типа и специфических типов спорадических новообразований, при которых наиболее часто обнаруживают мутации в гене NF1. Описаны примеры химиорезистентности меланомы, нейробластомы, рака яичника, молочной железы и легких, обусловленной мутациями в этом гене (при условии отсутствия мутаций известных протоонкогенов). Для преодоления устойчивости к химиотерапии данных новообразований предложено использовать ингибиторы митоген-активируемой протеинкиназы, эффективность которых доказана при лечении плексиформных нейрофибром. представлены данные о взаимосвязи NF1 и микрорнк, которые могут быть применены в таргетной терапии нейрофиброматоза 1-го типа и спорадических неоплазм с мутациями данного гена. рассмотрены перспективы генной терапии данных заболеваний.

Об авторах

Р. Н. Мустафин

ФГБОУ ВО «Башкирский государственный медицинский университет»

Автор, ответственный за переписку.
Email: fake@neicon.ru
ORCID iD: 0000-0002-4091-382X

450008 Уфа, ул. Ленина, 3

Россия

Список литературы

  1. Haferlach C., Grossmann V., Kohlmann A. et al. Deletion of the tumor-suppressor gene NF1 occur in 5 % of myeloid malignancies and is accompanied by a mutation in the remaining allele in half of the cases. Leukemia 2012;26(4):834–9. doi: 10.1038/leu.2011.296.
  2. Gutmann D.H., Ferner R.E., Listernick R.H. et al. Neurofibromatosis type 1. Nat Rev Dis Primers 2017;3:17004. doi: 10.1038/nrdp.2017.4.
  3. Bai R.Y., Esposito D., Tam A.J. et al. Feasibility of using NF1-GRD and AAV for gene replacement therapy in NF1-associated tumors. Gene Ther 2019;26(6): 277–86. doi: 10.1038/s41434-019-0080-9.
  4. Tsuji G., Takai-Yumine A., Kato T., Furue M. Metalloproteinase 1 downregulation in neurofibromatosis 1: therapeutic potential of antimalarial hydroxychloroquine and chloroquine. Cell Death Dis 2021;12(6):513. doi: 10.1038/s41419-021-03802-9.
  5. Stewart D.R., Korf B.R., Nathanson K.L. et al. Care of adults with neurofibromatosis type 1: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018;20(7):671–82. doi: 10.1038/gim.2018.28.
  6. Ly K.L., Blakeley J.O. The diagnosis and management of neurofibromatosis type 1. Med Clin North Am 2019;103:1035–54. doi: 10.1016/j.mcna.2019.07.004.
  7. Sung H., Hyland P.L., Pemov A. et al. Genome-wide association study of café-au-lait macule number in neurofibromatosis type 1. Mol Genet Genomic Med 2020;8(10):e1400. doi: 10.1002/mgg3.1400.
  8. Anderson J.L., Gutmann D.H. Neurofibromatosis type 1. Handb Clin Neurol 2015;132:75–86. doi: 10.1016/B978-0-444-627025.00004-4.
  9. Costa A.D.A., Gutmann D.H. Brain tumors in neurofibromatosis type 1. Neurooncol Adv 2019;1(1):vdz040. doi: 10.1093/noajnl/vdz040.
  10. Wei C.J., Gu S.C., Ren J.Y. et al. The impact of host immune cells on the development of neurofibromatosis type 1: the abnormal immune system provides an immune microenvironment for tumorigenesis. Neurooncol Adv 2019;1(1):vdz037. doi: 10.1093/noajnl/vdz037.
  11. Yang F.C., Ingram D.A., Chen S. et al. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/– mast cells. J Clin Invest 2003;112(12):1851–61. doi: 10.1172/JCI19195.
  12. Chen S., Burgin S., McDaniel A. et al. Nf1–/– Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phpsphatidylinositol 3-kinase. Am J Pathol 2010;177(6):3125–32. doi: 10.2353/ajpath.2010.100369.
  13. Karmakar S., Reilly K.M. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2017;6(1):45–60. doi: 10.2217/cns-2016-0024.
  14. Seminog O.O., Goldacre M.J. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer 2013;108(1):193–8. doi: 10.1038/bjc.2012.535.
  15. Holzel M., Huang S., Kostel J. et al. NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell 2010;142(2): 218–29. doi: 10.1016/j.cell.2010.06.004.
  16. Beauchamp E.M., Woods B.A., Dulak A.M. et al. Acquired resistance to dasatinib in lung cancer cell lines conferred by DDR2 gatekeeper mutation and NF1 loss. Mol Cancer Ther 2014;13(2):475–82. doi: 10.1158/1535-7163.MCT-13-0817.
  17. Patch A.M., Christie E.L., Etemadmoghadam D. et al. Wholegenome characterization of chemoresistant ovarian cancer. Nature 2015;521(7553): 489–94. doi: 10.1038/nature14410.
  18. Sokol E.S., Feng Y.X., Jin D.X. et al. Loss of function of NF1 is a mechanism of acquired resistance to endocrine therapy in lobular breast cancer. Ann Oncol 2019;30(1):115–23. doi: 10.1093/annonc/mdy497.
  19. Georgiou A., Stewart A., Cunningham D. et al. Inactivation of NF1 promotes resistance to EGFR Inhibition in KRAS/ NRAS/BRAFV600-wild-type colorectal cancer. Mol Cancer Res 2020;18(6):835–46. doi: 10.1158/1541-7786.MCR-19-1201.
  20. Zheng Z.Y., Anurag M., Lei J.T. et al. Neurofibromin is an estrogen receptor-α transcriptional co-repressor in breast cancer. Cancer Cell 2020;37(3):387– 402.e.7. doi: 10.1016/j.ccell.2020.02.003.
  21. Shain A.H., Garrido M., Botton T. et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet 2015;47(10):1194–9. doi: 10.1038/ng.3382.
  22. Wiesner T., Kiuru M., Scott S.N. et al. NF1 mutations are common in desmoplastic melanoma. Am J Surg Pathol 2015;39(10):1357–62. doi: 10.1097/PAS.0000000000000451.
  23. Krauthammer M., Kong Y., Bacchiocchi A. et al. Exome sequencing identifies recrurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 2015;47(9):996–1002. doi: 10.1038/ng.3361.
  24. Kandoth C., McLellan M.D., Vandin F. et al. Mutational landscape and significance across 12 major cancer types. Nature 2013;502(7471):333–9. doi: 10.1038/nature12634.
  25. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014;511(7511): 543–50. doi: 10.1038/nature13385.
  26. Alves Junior S.F., Zanetti G., de Melo A.S. et al. Neurofibromatosis type 1: state-of-the-art review with emphasis on pulmonary involvement. Respir Med 2019;149:9–15. doi: 10.1016/j.rmed.2019.01.002.
  27. Stiller C.A., Chessells J.M., Fitchett M. Neurofibromatosis and childhood leukaemia/lymphoma: a population-based UKCCSG study. Br J Cancer 1994;70(5): 969–72. doi: 10.1038/bjc.1994.431.
  28. Boudry-Labis E., Roche-Lestienne C., Nibourel O. et al. Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol 2013;88(4):306–11. doi: 10.1002/ajh.23403.
  29. Suarez-Kelly L.P., Yu L., Kline D. et al. Increased breast cancer risk in women with neurofibromatosis type 1: a metaanalysis and systematic review of the literature. Hered Cancer Clin Pract 2019;17:12. doi: 10.1186/s13053-019-0110-z.
  30. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumors. Nature 2012;490:61–70. doi: 10.1038/nature11412.
  31. Huang R.S., Haberberger J., McGregor K. et al. Clinicopathologic and genomic landscape of breast carcinoma brain metastases. Available at: https://theoncologist.onlinelibrary.wiley.com/doi/10.1002/onco.13855. doi: 10.1002/onco.13855.
  32. Kanchi K.L., Johnson K.J., Lu C. et al. Integrated analysis of germline and somatic variants in ovarian cancer. Nat Commun 2014;5:3156. doi: 10.1038/ncomms4156.
  33. Sangha N., Wu R., Kuick R. et al. Neurofibromin 1 (NF1) defects are common in human ovarian serous carcinomas and co-occur with TP53 mutations. Neoplasia 2008;10(12):1362–72. doi: 10.1593/neo.08784.
  34. Qiao G., Jia X., Zhang Y., Chen B. Neurofibromin 1 expression is negatively correlated with malignancy and prognosis of epithelial ovarian cancer. Int J Clin Exp Pathol 2019;12(5):1702–12.
  35. Welander J., Larsson C., Backdahl M. et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromacytomas. Hum Mol Genet 2012;21:5406–16. doi: 10.1093/hmg/dds402.
  36. Dombi E., Baldwin A., Marcus L. et al. Activity of selumetinib in neurofibromatosis type1-related plexiform neurofibromas. N Engl J Med 2016;375(26):2550–60. doi: 10.1056/NEJMoa1605943.
  37. Baldo F., Grasso A.G., Wiel L.C. et al. Selumetinib in the treatment of symptomatic intractable plexiform neurofibromas in neurofibromatosis type 1: a prospective case series with emphasis on side effects. Paediatr Drugs 2020;22(4):417–23. doi: 10.1007/s40272-020-00399-y.
  38. Gross A.M., Wolters P.L., Dombi E. et al. Selubetinib in children with inoperable plexiform neurofibromas. N Engl J Med 2020;382(15):1430–42. doi: 10.1056/NEJMoa1912735.
  39. Santo V.E., Passos J., Nzwalo H. et al. Selumetinib for plexiform neurofibromas in neurofibromatosis type 1: a single-institution experience. J Neurooncol 2020;147(2):459–63. doi: 10.1007/s11060-020-03443-6.
  40. Maertens O., Johnson B., Hollstein P. et al. Elucidating distinct roles for NF1 in melanomagenesis. Cancer Discrov 2013;3(3):338–49. doi: 10.1158/2159-8290.CD-12-0313.
  41. Whittaker S.R., Theurillat J.P., Allen E.V. et al. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov 2013;3(3):350–62. doi: 10.1158/2159-8290.CD-12-0470.
  42. Pearson A., Proszek P., Pascual J. et al. Inactivating NF1 Mutations are enriched in advanced breast cancer and contribute to endocrine therapy resistance. Clin Cancer Res 2020;26(3):608–22. doi: 10.1158/1078-0432.CCR-18-4044.
  43. De Bruin E.C., Cowell C., Warne P.H. et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov 2014;4(5):606–19. doi: 10.1158/2159-8290.CD-13-0741.
  44. Paschou M., Doxakis E. Neurofibromin 1 is a miRNA target in neurons. PLoS One 2012;7(10):346773. doi: 10.1371/journal.pone.0046773.
  45. Stark M.S., Bonazzi V.F., Boyle G.M. et al. MiR-514a regulates the tumour suppressor NF1 and modulates BRAFi sensitivity in melanoma. Oncotarget 2015;6(19):17753–63. doi: 10.18632/oncotarget.3924.
  46. Wang S., Ma G., Zhu H. et al. MiR-107 regulates tumor progression by targeting NF1 in gastric cancer. Sci Rep 2016;6:36531. doi: 10.1038/srep36531.
  47. Guo L., Li B., Yang J. et al. Fibroblastderived exosomal microRNA-369 potentiates migration and invasion of lung squamous cell carcinoma cells via NF1-mediated MAPK signaling pathway. Int J Mol Med 2020;46(2):595–608. doi: 10.3892/ijmm.2020.4614.
  48. Chen J., Cui J., Guo X. et al. Increased expression of miR-641 contributes to erlotinib resistance in non-small-cell lung cancer cells by targeting NF1. Cancer Med 2018;7(4):1394–1403. doi: 10.1002/cam4.1326.
  49. Zhu H., Yang J., Yang S. MicroRNA103a-3p potentiates chemoresistance to cisplatin in non-small cell lung carcinoma by targeting neurofibromatosis 1. Exp Ther Med 2020;19(3):1797–805. doi: 10.3892/etm.2020.8418.
  50. Li S., Li W., Chen G. et al. MiRNA-27a-3p induces temozolomide resistance in gliomas by inhibiting NF1 level. Am J Transl Res 2020;12(8):4749–56.
  51. Garcia-Orti L., Crostobal I., Cirauqui C. et al. Integration of SNP and mRNA arrays with microRNA profiling reveals that MiR-370 is upregulated and targets NF1 in acute myeloid leukemia. PLoS One 2012;7(10):e47717. doi: 10.1371/journal.pone.0047717.
  52. Su J., Ruan S., Dai S. et al. NF1 regulates apoptosis in ovarian cancer cells by targeting MCL1 via miR-142-5p. Pharmacogenomics 2019;20(3):155–65. doi: 10.2217/pgs-2018-0161.
  53. Chai G., Liu N., Ma J. et al. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci 2010;101(9):1997–2004. doi: 10.1111/j.1349-7006.2010.01616.x.
  54. Lu H., Liu P., Pang Q. MiR-27a-3p/miR27b-3p promotes neurofibromatosis type 1 via targeting of NF1. Available at: https:// link.springer.com/article/10.1007%2 Fs12031-020-01779-2. doi: 10.1007/s12031-020-01779-2.
  55. Wang M., Wang Z., Zhu X. et al. NFKB1-miR-612-FAIM2 pathway regulates tumorigenesis in neurofibromatosis type 1. In Vitro Cell Dev Biol Anim 2019;55(7):491–500. doi: 10.1007/s11626-019-00370-3.
  56. Na Y., Hall A., Choi K. et al. MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK. Oncogene 2021;40:951–63. doi: 10.1038/s41388-020-01581-9.
  57. Hong A., Piva M., Liu S. et al. Durable suppression of acquired MEK inhibitor resistance in cancer by sequestering MEK from ERK and promoting antitumor T-cell immunity. Cancer Discov 2021;11(3):714–35. doi: 10.1158/2159-8290.CD-20-0873.
  58. Wang S., Liechty B., Patel S. et al. Programmed death ligand 1 expression and tumor infiltrating lymphocytes in neurofibromatosis type 1 and 2 associated tumors. J Neurooncol 2018;138(1):183–90. doi: 10.1007/s11060-018-2788-6.
  59. Kawachi Y., Maruyama H., Kshitsuka Y. et al. NF1 gene silencing induces upregulation of vascular endothelial growth factor expression in both Schwann and non-Schwann cells. Exp Dermatol 2013;22(4):262–5. doi: 10.1111/exd.12115.
  60. Theeler B.J., Ellezam B., Yust-Katz S. et al. Prolonged survival in adult neurofibromatosis type I patients with recurrent high-grade gliomas treated with bevacizumab. J Neurol 2014;261(8):1559–64. doi: 10.1007/s00415-014-7292-0.
  61. Walker J.A., Upadhyaya M. Emerging therapeutic targeting for neurofibromatosis. Expert Opin Ther Targets 2018;22(5):419–37. doi: 10.1080/14728222.2018.1465931.
  62. Cui X.W, Ren J.Y., Gu Y.H. et al. NF1, neurofibromin and gene therapy: Prospects of next-generation therapy. Curr Gene Ther 2020;20(2):100–8. doi: 10.2174/1566523220666200806111451.
  63. Keeling K.M., Xue X., Gunn G., Bedwell D.M. Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet 2014;15:371–94. doi: 10.1146/annurev-genom-091212-153527.
  64. Lee M.J., Hung S.H., Huang M.C. et al. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells. PLoS One 2017;12(5):e0178493. doi: 10.1371/journal.pone.0178493.
  65. Pros E., Fernandez-Rodriguez J., Canet B. et al. Antisense therapeutics for neurofibromatosis type 1 caused by deep intronic mutations. Hum Mutat 2009;30(3):454–62. doi: 10.1002/humu.20933.
  66. Choi G., Huang B., Pinarbasi E. et al. Genetically mediated Nf1 loss in mice promotes diverse radiation-induced tumors modeling second malignant neoplasms. Cancer Res 2012;72(24): 6425–34. doi: 10.1158/0008-5472.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ,



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 57560 от  08.04.2014.