Dexamethasone effects on the expression and content of glycosylated components of mouse brain tissue
- Authors: Aladev S.D.1, Sokolov D.K.1, Strokotova A.V.1, Kazanskaya G.M.1, Volkov A.M.2, Politko M.O.1, Shahmuradova A.I.1,3, Kliver E.E.2, Tsidulko A.Y.1, Aidagulova S.V.1,4, Grigorieva E.V.1
-
Affiliations:
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
- E.N. Meshalkin National Medical Research Center
- Novosibirsk State Medical University
- Issue: Vol 10, No 1 (2023)
- Pages: 25-39
- Section: RESEARCH ARTICLES
- Published: 30.03.2023
- URL: https://umo.abvpress.ru/jour/article/view/509
- DOI: https://doi.org/10.17650/2313-805X-2023-10-1-25-39
- ID: 509
Cite item
Full Text
Abstract
Introduction. Glucocorticoids are actively used in the treatment of various diseases, however their long-term use leads to numerous negative side-effects, the molecular mechanisms of which remain poorly understood.
Aim. Study of the short-term (1–10 days) effects of various doses of dexamethasone (Dex) (0,1–10 mg/kg) on the expression of the glucocorticoid receptor (GR, Nr3c1), core proteins of main proteoglycans and heparan sulfate metabolism-involved genes, as well as the content of carbohydrate macromolecules of glycosaminoglycans in the brain tissue of experimental animals.
Materials and methods. In the study, C57Bl/6 mice were used. The expression of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes was determined by real-time polymerase chain reaction with reverse transcription. The content and localization of GR protein molecule were studied by Western blot and immunohistochemical analysis, and the glycosaminoglycan content was determined by dot-blot analysis and Alcian Blue staining.
Results. It was shown that a single Dex administration leads to fast (1–3 days) short-term activation of GR expression (+1.5 times, p <0.05), proteoglycan’s genes (syndecan-3, Sdc3; perlecan, Hspg2; phosphacan, Ptprz1; neurocan, Ncan; +2–3-fold; p <0.05) and heparan sulfate-metabolism-involved genes (Ndst1, Glce, Hs2st1, Hs6st1, Sulf1 / 2; +1.5–2-fold; p <0.05) in the mouse brain, with a return to control values by 7–10 days after Dex administration. At the same time, the effect of Dex on carbohydrate macromolecules of glycosaminoglycans was more delayed and stable, increasing the content of low-sulfated glycosaminoglycans in the brain tissue in a dose-dependent manner starting from day 1 after Dex administration. Highly-sulfated glycosaminoglycans showed more delayed response to Dex administration, and an increase in their content was observed only at higher doses (2.5 and 10 mg/kg) and only on 7–10 days after its administration, apparently, mainly due to an increase in heparan sulfate content.
Conclusion. In general, the effect of a single injection of Dex on the transcriptional activity of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes were short-termed, and the genes expression quickly returned to the normal levels. However, even a single use of Dex significantly increased the content of total as well as highly sulfated glycosaminoglycans in the mouse brain tissue, which can lead to the changes in the composition and structure of the brain tissue, as well as its functional characteristics.
About the authors
S. D. Aladev
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
Author for correspondence.
Email: s.aladev@alumni.nsu.ru
ORCID iD: 0000-0001-5883-4831
Stanislav Dmitrievich Aladev
2/12 Timakova St., Novosibirsk 630117
Russian FederationD. K. Sokolov
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-4145-5277
2/12 Timakova St., Novosibirsk 630117
Russian FederationA. V. Strokotova
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0001-5336-8552
2/12 Timakova St., Novosibirsk 630117
Russian FederationG. M. Kazanskaya
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0003-2598-1805
2/12 Timakova St., Novosibirsk 630117
Russian FederationA. M. Volkov
E.N. Meshalkin National Medical Research Center
Email: fake@neicon.ru
ORCID iD: 0000-0001-9697-7091
15 Rechkunovskaya St., Novosibirsk 630055
Russian FederationM. O. Politko
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-9650-9877
2/12 Timakova St., Novosibirsk 630117
Russian FederationA. I. Shahmuradova
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation;
Email: fake@neicon.ru
2/12 Timakova St., Novosibirsk 630117
Russian FederationE. E. Kliver
E.N. Meshalkin National Medical Research Center
Email: fake@neicon.ru
ORCID iD: 0000-0002-3915-3616
15 Rechkunovskaya St., Novosibirsk 630055
Russian FederationA. Y. Tsidulko
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0002-1056-020X
2/12 Timakova St., Novosibirsk 630117
Russian FederationS. V. Aidagulova
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation; Novosibirsk State Medical University
Email: fake@neicon.ru
ORCID iD: 0000-0001-7124-1969
2/12 Timakova St., Novosibirsk 630117
52 Krasnyi Prospect, Novosibirsk 630091
Russian FederationE. V. Grigorieva
Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
Email: fake@neicon.ru
ORCID iD: 0000-0003-2457-9179
2/12 Timakova St., Novosibirsk 630117
Russian FederationReferences
- Dubinski D., Hattingen E., Senft C. et al. Controversial roles for dexamethasone in glioblastoma - Opportunities for novel vascular targeting therapies. J Cereb Blood Flow Metab 2019;39(8):1460–8. doi: 10.1177/0271678X19859847
- Liston C., Gan W.B. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc Natl Acad Sci USA 2011;108(38):16074–9. doi: 10.1073/pnas.1110444108
- Gray J.D., Kogan J.F., Marrocco J. et al. Genomic and epigenomic mechanisms of glucocorticoids in the brain. Nat Rev Endocrinol 2017;13(11):661–73. doi: 10.1038/nrendo.2017.97
- Nicholson C., Hrabětová S. Brain extracellular space: the final frontier of neuroscience. Biophys J 2017;113(10):2133–42. doi: 10.1016/j.bpj.2017.06.052
- Strokotova A.V., Grigorieva E.V. Glucocorticoid effects on proteoglycans and glycosaminoglycans. Int J Mol Sci 2022;23(24):15678. doi: 10.3390/ijms232415678
- Liu W.L., Lee Y.H., Tsai S.Y. et al. Methylprednisolone inhibits the expression of glial fibrillary acidic protein and chondroitin sulfate proteoglycans in reactivated astrocytes. Glia 2008;56(13):1390–400. doi: 10.1002/glia.20706
- Wei F., Song J., Zhang C. et al. Chronic stress impairs the aquaporin-4-mediated glymphatic transport through glucocorticoid signaling. Psychopharmacology (Berl) 2019;236(4):1367–84. doi: 10.1007/s00213-018-5147-6
- Tsidulko A.Y., Bezier C., de La Bourdonnaye G. et al. Conventional anti-glioblastoma chemotherapy affects proteoglycan composition of brain extracellular matrix in rat experimental model in vivo. Front Pharmacol 2018;2(9):1104. doi: 10.3389/fphar.2018.01104
- Tsidulko A.Y., Shevelev O.B., Khotskina A.S. et al. Chemotherapyinduced degradation of glycosylated components of the brain extracellular matrix promotes glioblastoma relapse development in an animal model. Front Oncol 2021;19(11):713139. doi: 10.3389/fonc.2021.713139
- Timmermans S., Souffriau J., Libert C. A General introduction to glucocorticoid biology. Front Immunol 2019;4(10):1545. doi: 10.3389/fimmu.2019.01545
- Weikum E.R., Knuesel M.T., Ortlund E.A. et al. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 2017;18(3):159–74. doi: 10.1038/nrm.2016.152
- Eklund K.K., Humphries D.E., Xia Z. et al. Glucocorticoids inhibit the cytokine-induced proliferation of mast cells, the high affinity IgE receptor-mediated expression of TNF-alpha, and the IL-10- induced expression of chymases. J Immunol 1997;158(9):4373–80.
- Watanabe H., Gao L., Sugiyama S. et al. Mouse aggrecan, a large cartilage proteoglycan: protein sequence, gene structure and promoter sequence. Biochem J 1995;308(Pt 2):433–40. doi: 10.1042/bj308043
- Rauch U., Grimpe B., Kulbe G. et al. Structure and chromosomal localization of the mouse neurocan gene. Genomics 1995;28(3):405–10. doi: 10.1006/geno.1995.1168
- Benad-Mehner P., Thiele S., Rachner T.D. et al. Targeting syndecan-1 in breast cancer inhibits osteoclast functions through up-regulation ofosteoprotegerin. J Bone Oncol 2013;3(1):18–24. doi: 10.1016/j.jbo.2013.11.001
- Derfoul A., Perkins G.L., Hall D.J. et al. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 2006;24(6):1487–95. doi: 10.1634/stemcells.2005-0415
- Xu C., Sun M., Zhang X. et al. Activation of glucocorticoid receptor inhibits the stem-like properties of bladder cancer via inactivating the β-catenin pathway. Front Oncol 2020;10:1332. DOI: 10.3389/ fonc.2020.01332
- Yao Y.Y., Liu D.M., Xu D.F. et al. Memory and learning impairment induced by dexamethasone in senescent but not young mice. Eur J Pharmacol 2007;574(1):20–8. doi: 10.1016/j.ejphar.2007.07.021
- Drakulić D., Veličković N., Stanojlović M. et al. Low-dose dexamethasone treatment promotes the pro-survival signalling pathway in the adult rat prefrontal cortex. J Neuroendocrinol 2013;25(7):605–16. doi: 10.1111/jne.12037
- Franceschi S., Lessi F., Morelli M. et al. Sedoheptulose kinase SHPK expression in glioblastoma: emerging role of the nonoxidative pentose phosphate pathway in tumor proliferation. Int J Mol Sci 2022;23(11):5978. doi: 10.3390/ijms23115978
- Shaqura M., Li X., Al-Khrasani M. et al. Membrane-bound glucocorticoid receptors on distinct nociceptive neurons as potential targets for pain control through rapid non-genomic effects.Neuropharmacology 2016;111:1–13. doi: 10.1016/j.neuropharm.2016.08.019
- Herman J.P., Patel P.D., Akil H. et al. Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol Endocrinol 1989;3(11):1886–94. doi: 10.1210/mend-3-11-1886
- Vielkind U., Walencewicz A., Levine J.M. et al. Type-II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J Neurosci Res 1990;27(3):360–73. doi: 10.1002/jnr.490270315
- Van Gemert N.G., Meijer O.C., Morsink M.C. et al. Effect of brief corticosterone administration on SGK1 and RGS4 mRNA expression in rat hippocampus. Stress 2006;9(3):165–70. doi: 10.1080/10253890600966169
- Piechota M., Korostynski M., Golda S. et al. Transcriptional signatures of steroidhormones in the striatal neurons and astrocytes. BMC Neurosci 2017;18(1):37. doi: 10.1186/s12868-017-0352-5
- Tentillier N., Etzerodt A., Olesen M.N. et al. Anti-inflammatory modulation of microglia via CD163-targeted glucocorticoids protects dopaminergic neurons in the 6-OHDA Parkinson’s disease model. J Neurosci 2016;36(36):9375–90. DOI: 10.1523/ JNEUROSCI.1636-16.2016
- Hu W., Zhang Y., Wu W. et al. Chronic glucocorticoids exposure enhances neurodegeneration in the frontal cortex and hippocampus via NLRP-1 inflammasome activation in male mice. Brain Behav Immun 2016;52:58–70. doi: 10.1016/j.bbi.2015.09.019
- Zhang B., Zhang Y., Xu T. et al. Chronic dexamethasone treatment results in hippocampal neurons injury due to activate NLRP1 inflammasome in vitro. Int Immunopharmacol 2017;49:222–30. doi: 10.1016/j.intimp.2017.05.039
- Kazanskaya G.M., Tsidulko A.Y., Volkov A.M. et al. Heparan sulfate accumulation and perlecan/HSPG2 up-regulation in tumour tissue predict low relapse-free survival for patients with glioblastoma. Histochem Cell Biol 2018;149(3):235–44. doi: 10.1007/s00418-018-1631-7
- Zhong Y., Bellamkonda R.V. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res 2007;1148:15–27. doi: 10.1016/j.brainres.2007.02.024
Supplementary files


