LINE-1 hypomethylation and HIST1H4F hypermethylation as oncomarkers in liquid biopsy of colorectal cancer
- Authors: Kondratova V.N.1, Botezatu I.V.1, Stroganova A.M.1, Dranko S.L.1, Lichtenstein A.V.1
-
Affiliations:
- N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
- Issue: Vol 11, No 2 (2024)
- Pages: 85-96
- Section: RESEARCH ARTICLES
- Published: 28.06.2024
- URL: https://umo.abvpress.ru/jour/article/view/679
- DOI: https://doi.org/10.17650/2313-805X-2024-11-2-85-96
- ID: 679
Cite item
Full Text
Abstract
Introduction. Local hypermethylation of gene promoters and global genome hypomethylation are well-known manifestations of aberrant methylation associated with carcinogenesis. We investigated this phenomenon as a possible diagnostic marker for liquid biopsy of colorectal cancer using the original quantitative DNA melting analysis with hybridiza-
tion probes (qDMA-HP) method.
Aim. To quantify the methylation of HIST1H4F promoter and LINE-1 transposon in circulating blood plasma DNA of colorectal cancer patients.
Materials and methods. Bisulfite-treated DNA samples isolated from blood plasma of healthy donors and cancer patients were analyzed. HIST1H4F methylation was assessed by asymmetric polymerase chain reaction with hybridized probe and post-amplification melting of probe / amplicon hybrids. To test for repetitive and highly polymorphic LINE-1 sequences, asymmetric polymerase chain reaction with hybridized probe and SYBR Green intercalating dye was used, followed by melting of hybrids and analysis of multicomponent melt curves.
Results. High diagnostic efficiency of LINE-1 and HIST1H4F methylation markers in liquid biopsy of colorectal cancer was demonstrated with the area under the ROC curve = 0.92, sensitivity – 100 %, specificity – 84 %. Cross validation supports this result. Hypermethylation of HIST1H4F and hypomethylation of LINE-1 are statistically significantly correlated (Spearman correlation coefficient r = 0.4; p = 0.01).
Conclusion. The qDMA-HP is suitable for quantitative assessment of aberrant methylation of various clinically significant genes.
Keywords
About the authors
V. N. Kondratova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-0614-8789
115522; 24 Kashirskoe Shosse; Moscow
Russian FederationI. V. Botezatu
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-0297-4963
115522; 24 Kashirskoe Shosse; Moscow
Russian FederationA. M. Stroganova
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0002-7297-5240
115522; 24 Kashirskoe Shosse; Moscow
Russian FederationS. L. Dranko
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Email: fake@neicon.ru
ORCID iD: 0000-0003-3315-0817
115522; 24 Kashirskoe Shosse; Moscow
Russian FederationA. V. Lichtenstein
N. N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Author for correspondence.
Email: alicht@mail.ru
ORCID iD: 0000-0002-0190-5069
Anatoly Vladimirovitch Lichtenstein
115522; 24 Kashirskoe Shosse; Moscow
Russian FederationReferences
- Costello J.F., Fruhwald M.C., Smiraglia D.J. et al. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 2000;24(2):132–8. doi: 10.1038/72785
- Chalitchagorn K., Shuangshoti S., Hourpai N. et al. Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 2004;23(54):8841–6. doi: 10.1038/sj.onc.1208137
- Lichtenstein A.V., Kiseljova N.P. DNA methylation and carcinogenesis. Biokhimiya = Biochemistry 2001;66(3):235–55. (In Russ.). doi: 10.1023/a:1010249510906
- Zaletaev D.V., Nemtsova M.V., Bochkov N.P. DNA methylation as an etiologic factor in carcinogenesis. Vestnik Rossiyskoy akademii meditsinskikh nauk = Bulletin of the Russian Academy of Medical Sciences 2002;6–11. (In Russ.).
- Robertson K.D. DNA methylation and human disease. Nat Rev Genet 2005;6(8):597–610. doi: 10.1038/nrg1655
- Ross J.P., Rand K.N., Molloy P.L. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2010;2(2):245–69. doi: 10.2217/epi.10.2
- Nemtsova M.V., Mikhaylenko D.S., Kuznetsova E.B. et al. Inactivation of epigenetic regulators due to mutations in solid tumors. Biochemistry (Mosc) 2020;85(7):735–48. (In Russ.). doi: 10.1134/S0006297920070020
- Estecio M.R., Gharibyan V., Shen L. et al. LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS One 2007;2(5):e399. doi: 10.1371/journal.pone.0000399
- Ohno S. So much “junk” DNA in our genome. Brookhaven Symp Biol 1972;23:366–70.
- Fedoroff N.V. Transposable elements, epigenetics, and genome evolution. Science 2012;338(6108):758–67. doi: 10.1126/science.338.6108.758
- Ponomaryova A.A., Rykova E.Y., Gervas P.A. et al. Aberrant methylation of LINE-1 transposable elements: a search for cancer biomarkers. Cells 2020;9(9):2017. doi: 10.3390/cells9092017
- Cajuso T., Sulo P., Tanskanen T. et al. Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun 2019;10:4022. doi: 10.1038/s41467-019-11770-0
- Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pancancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020;52(3):306–19. doi: 10.1038/s41588-019-0562-0
- Bouras E., Karakioulaki M., Bougioukas K.I. et al. Gene promoter methylation and cancer: an umbrella review. Gene 2019;710:333–40. doi: 10.1016/j.gene.2019.06.023
- Markou A., Londra D., Tserpeli V. et al. DNA methylation analysis of tumor suppressor genes in liquid biopsy components of early stage NSCLC: a promising tool for early detection. Clin Epigenetics 2022;14(1):61. doi: 10.1186/s13148-022-01283-x
- Yang J., Wang Q., Zhang Z.Y. et al. DNA methylation-based epigenetic signatures predict somatic genomic alterations in gliomas. Nat Commun 2022;13:4410. doi: 10.1038/s41467-022-31827-x
- Yang X., Wen X., Guo Q. et al. Predicting disease-free survival in colorectal cancer by circulating tumor DNA methylation markers. Clin Epigenetics 2022;14:160. doi: 10.1186/s13148-022-01383-8
- Weisenberger D.J., Campan M., Long T.I. et al. Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 2005;33(21):6823–36. doi: 10.1093/nar/gki987
- Piskareva O., Lackington W., Lemass D. et al. The human L1 element: a potential biomarker in cancer prognosis, current status and future directions. Curr Mol Med 2011;11(4):286–303. doi: 10.2174/156652411795677954
- Kitkumthorn N., Mutirangura A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics 2011;2(2):315–30. doi: 10.1007/s13148-011-0032-8
- Nagai Y., Sunami E., Yamamoto Y. et al. LINE-1 hypomethylation status of circulating cell-free DNA in plasma as a biomarker for colorectal cancer. Oncotarget 2017;8(7):11906–16. doi: 10.18632/oncotarget.14439
- Gainetdinov I.V., Kapitskaya K.Y., Rykova E.Y. et al. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients. Lung Cancer 2016;99:127–30. doi: 10.1016/j.lungcan.2016.07.005
- Liu Z.J., Huang Y., Wei L. et al. Combination of LINE-1 hypomethylation and RASSF1A promoter hypermethylation in serum DNA is a non-invasion prognostic biomarker for early recurrence of hepatocellular carcinoma after curative resection. Neoplasma 2017;64(5):795–802. doi: 10.4149/neo_2017_519
- Serrano M.J., Garrido-Navas M.C., Diaz Mochon J.J. et al. Precision prevention and cancer interception: the new challenges of liquid biopsy. Cancer Discov 2020;10(11):1635. doi: 10.1158/2159-8290.CD-20-0466
- Cescon D.W., Bratman S.V., Chan S.M. et al. Circulating tumor DNA and liquid biopsy in oncology. Nat Cancer 2020;1(3):276–90. doi: 10.1038/s43018-020-0043-5
- Nassar F.J., Msheik Z.S., Nasr R.R. et al. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin Epigenetics 2021;13(1):111. doi: 10.1186/s13148-021-01095-5
- Ponomaryova A.A., Rykova E.Y., Azhikina T.L. et al. Long interspersed nuclear element-1 methylation status in the circulating DNA from blood of patients with malignant and chronic inflammatory lung diseases. Eur J Cancer Prevent 2021;30(2):127–31. doi: 10.1097/CEJ.0000000000000601
- Quillien V., Lavenu A., Karayan-Tapon L. et al. Comparative assessment of 5 methods (methylation-specific polymerase chain reaction, MethyLight, pyrosequencing, methylation-sensitive high-resolution melting, and immunohistochemistry) to analyze O6-methylguanine-DNA-methyltranferase in a series of 100 glioblastoma patients. Cancer 2012;118(17):4201–11. doi: 10.1002/cncr.27392
- Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001;25(4):402–8. doi: 10.1006/meth.2001.1262
- de Vos L., Gevensleben H., Schrock A. et al. Comparison of quantification algorithms for circulating cell-free DNA methylation biomarkers in blood plasma from cancer patients. Clin Epigenetics 2017;9:125. doi: 10.1186/s13148-017-0425-4
- Dietrich D., Hasinger O., Liebenberg V. et al. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol 2012;21(2):93–104. doi: 10.1097/PDM.0b013e318240503b
- Dietrich D., Hasinger O., Banez L.L. et al. Development and clinical validation of a real-time PCR assay for PITX2 DNA methylation to predict prostate-specific antigen recurrence in prostate cancer patients following radical prostatectomy. J Mol Diagn 2013;15(2):270–9. doi: 10.1016/j.jmoldx.2012.11.002
- Dietrich D., Jung M., Puetzer S. et al. Diagnostic and prognostic value of SHOX2 and SEPT9 DNA methylation and cytology in benign, paramalignant and malignant pleural effusions. PLoS One 2013;8(12):e84225. doi: 10.1371/journal.pone.0084225
- Grutzmann R., Molnar B., Pilarsky C. et al. Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 2008;3(11):e3759. doi: 10.1371/journal.pone.0003759
- Warnecke P.M., Stirzaker C., Melki J.R. et al. Detection and measurement of PCR bias in quantitative methylation analysis of bisulphite-treated DNA. Nucleic Acids Res 1997;25(21):4422–6. doi: 10.1093/nar/25.21.4422
- Korshunova Y., Maloney R.K., Lakey N. et al. Massively parallel bisulphite pyrosequencing reveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA. Genome Res 2008;18(1):19–29. doi: 10.1101/gr.6883307
- Egger G., Wielscher M., Pulverer W. et al. DNA methylation testing and marker validation using PCR: diagnostic applications. Exp Rev Mol Diagn 2012;12(1):75–92. doi: 10.1586/erm.11.90
- Pharo H.D., Andresen K., Berg K.C.G. et al. A robust internal control for high-precision DNA methylation analyses by droplet digital PCR. Clin Epigenetics 2018;10:24. doi: 10.1186/s13148-018-0456-5
- Botezatu I.V., Kondratova V.N., Shelepov V.P. et al. Asymmetric mutant-enriched polymerase chain reaction and quantitative DNA melting analysis of KRAS mutation in colorectal cancer. Anal Biochem 2020;590:1–9. doi: 10.1016/j.ab.2019.113517
- Kondratova V.N., Botezatu I.V., Shelepov V.P. et al. SLAM-MS: mutation scanning of stem-loop amplicons with TaqMan probes by quantitative DNA melting analysis. Sci Rep 2020;10(1):5476. doi: 10.1038/s41598-020-62173-x
- Bustin S.A., Benes V., Garson J.A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 2009;55(4):611–22. doi: 10.1373/clinchem.2008.112797
- Botezatu I.V., Kondratova V.N., Stroganova A.M. et al. Liquid biopsy of colorectal cancer: a new approach to evaluation of aberrant methylation of the SEPT9 gene. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology 2021;8(4):53–60. URL: https://umo.abvpress.ru/jour/article/view/389
- Botezatu I.V., Kondratova V.N., Stroganova A.M. et al. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clinica Chimica Acta 2023;551:117591. doi: 10.1016/j.cca.2023.117591
- Dong S.H., Li W., Wang L. et al. Histone-related genes are hypermethylated in lung cancer and hypermethylated HIST1H4F could serve as a pan-cancer biomarker. Cancer Res 2019;79(24):6101–12. doi: 10.1158/0008-5472.CAN-19-1019
- Mazzara S., Rossi R.L., Grifantini R. et al. CombiROC: an interactive web tool for selecting accurate marker combinations of omics data. Sci Rep 2017;7:45477. doi: 10.1038/srep45477
- Budczies J., Klauschen F., Sinn B.V. et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One 2012;7(12):e51862. doi: 10.1371/journal.pone.0051862
- Huang Q., Liu Z., Liao Y. et al. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes. PLoS One 2011;6(4):e19206. doi: 10.1371/journal.pone.0019206
- Wittwer C.T. High-resolution DNA melting analysis: advancements and limitations. Hum Mutat 2009;30(6):857–9. doi: 10.1002/humu.20951
- Erali M., Wittwer C.T. High resolution melting analysis for gene scanning. Methods 2010;50(4):250–61. doi: 10.1016/j.ymeth.2010.01.013
- Tse M.Y., Ashbury J.E., Zwingerman N. et al. A refined, rapid and reproducible high resolution melt (HRM)-based method suitable for quantification of global LINE-1 repetitive element methylation. BMC Res Notes 2011;4:565. doi: 10.1186/1756-0500-4-565
- Stanzer S., Balic M., Strutz J. et al. Rapid and reliable detection of LINE-1 hypomethylation using high-resolution melting analysis. Clin Biochem 2010;43(18):1443–8. doi: 10.1016/j.clinbiochem.2010.09.013
- Armbruster D.A., Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 2008;29(Suppl. 1):S49–52.
- Antelo M., Balaguer F., Shia J. et al. A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One 2012;7(9):e45357. doi: 10.1371/journal.pone.0045357
- Akimoto N., Zhao M., Ugai T. et al. Tumor long interspersed nucleotide element-1 (LINE-1) hypomethylation in relation to age of colorectal cancer diagnosis and prognosis. Cancers 2021;13(9):2016. doi: 10.3390/cancers13092016
- Debernardi C., Libera L., Berrino E. et al. Evaluation of global and intragenic hypomethylation in colorectal adenomas improves patient stratification and colorectal cancer risk prediction. Clin Epigenetics 2021;13(1):154. doi: 10.1186/s13148-021-01135-0
- Iacopetta B., Grieu F.F., Phillips M.F. et al. Methylation levels of LINE-1 repeats and CpG island loci are inversely related in normal colonic mucosa. Cancer Sci 2007;98(9):1454–60. doi: 10.1111/j.1349-7006.2007.00548.x
- Ren J., Cui J.P., Luo M. et al. The prevalence and persistence of aberrant promoter DNA methylation in benzene-exposed Chinese workers. PLoS One 2019;14(8):e0220500. doi: 10.1371/journal.pone.0220500
- Sahnane N., Magnoli F., Bernasconi B. et al. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015;7:131. doi: 10.1186/s13148-015-0165-2
- Stefanoli M., La R.S., Sahnane N. et al. Prognostic relevance of aberrant DNA methylation in g1 and g2 pancreatic neuroendocrine tumors. Neuroendocrinology 2014;100(1)26–34. doi: 10.1159/000365449
- Ogino S., Kawasaki T., Nosho K. et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer 2008;122(12):2767–73. doi: 10.1002/ijc.23470
- Yang A.S., Estécio M.R.H., Doshi K. et al. A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004;32(3):e38-8. doi: 10.1093/nar/gnh032
- Barchitta M., Quattrocchi A., Maugeri A. et al. LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: A systematic review and meta-analysis. PLoS One 2014;9(10):e109478. doi: 10.1371/journal.pone.0109478
Supplementary files


