Модели сарком мягких тканей in vitro: фундаментальные и клинические аспекты
https://doi.org/10.17650/2313-805X-2025-12-3-36-45
Аннотация
Диагностика и подбор эффективной терапии сарком мягких тканей (СМТ) затруднены в связи с низкой распространенностью и значительной гистологической вариабельностью данных опухолей. Развитие молекулярно-генетических методов тестирования направлено на улучшение дифференциальной диагностики различных типов СМТ и поиск генетических нарушений, которые могут являться потенциальными мишенями для терапии. Разработка эффективных методов лечения требует адекватных доклинических моделей, способных воспроизводить биологические особенности опухолей. В статье представлены молекулярно-генетические методы тестирования для диагностики и терапии СМТ, достижения в получении моделей in vitro СМТ, проблемы их использования в доклинических исследованиях, а также перспективы использования первичных клеточных линий для персонализированного лечения.
Ключевые слова
Об авторах
У. А. БоковаРоссия
Устинья Анатольевна Бокова
Россия, 634009 Томск, пер. Кооперативный, 5
М. С. Третьякова
Россия
Россия, 634009 Томск, пер. Кооперативный, 5
П. К. Козлова
Россия
Россия, 634009 Томск, пер. Кооперативный, 5
А. А. Коробейникова
Россия
Россия, 634009 Томск, пер. Кооперативный, 5
М. Е. Меняйло
Россия
Россия, 634009 Томск, пер. Кооперативный, 5
Т. С. Геращенко
Россия
Россия, 634009 Томск, пер. Кооперативный, 5
Е. В. Денисов
Россия
Россия, 634009 Томск, пер. Кооперативный, 5
Список литературы
1. Marusyk A., Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010;1805(1):105–17. DOI: 10.1016/j.bbcan.2009.11.002
2. Sbaraglia M., Dei Tos A.P. The pathology of soft tissue sarcomas. Radiol Med 2019;124(4):266–81. DOI: 10.1007/s11547-018-0882-7
3. Gaebler M., Silvestri A., Haybaeck J. et al. Three-dimensional patient-derived in vitro sarcoma models: promising tools for improving clinical tumor management. Front Oncol 2017;11(7):203. DOI: 10.3389/fonc.2017.00203
4. Mcconnell L., Houghton O., Stewart P. et al. A novel next generation sequencing approach to improve sarcoma diagnosis. Mod Pathol 2020;33(7):1350–9. DOI: 10.1038/s41379-020-0488-1
5. Vibert J., Watson S. The molecular biology of soft tissue sarcomas: current knowledge and future perspectives. Cancers (Basel) 2022;14(10):2548. DOI: 10.3390/cancers14102548
6. Kokkali S., Boukovinas I., De Bree E. et al. The impact of expert pathology review and molecular diagnostics on the management of sarcoma patients: a prospective study of the hellenic group of sarcomas and rare cancers. Cancers (Basel) 2024;16(13):2314. DOI: 10.3390/cancers16132314
7. Italiano A., Di Mauro I., Rapp J. et al. Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. Lancet Oncol 2016;17(4):532–8. DOI: 10.1016/s1470-2045(15)00583-5
8. Benini S., Gamberi G., Cocchi S. et al. The efficacy of molecular analysis in the diagnosis of bone and soft tissue sarcoma: a 15-year mono-institutional study. Int J Mol Sci 2022;24(1):632. DOI: 10.3390/ijms24010632
9. Watkins J.A., Trotman J., Tadross J.A. et al. Introduction and impact of routine whole genome sequencing in the diagnosis and management of sarcoma. Br J Cancer 2024;131(5):860–9. DOI: 10.1038/s41416-024-02721-8
10. Gounder M.M., Agaram N.P., Trabucco S.E. et al. Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nat Commun 2022;13(1):3406. DOI: 10.1038/s41467-022-30496-0
11. Bean L.J.H., Funke B., Carlston C.M. et al. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020;22(3):453–61. DOI: 10.1038/s41436-019-0666-z
12. Xu L., Xie X., Shi X. et al. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol Lett 2021;21(5):353. DOI: 10.3892/ol.2021.12614
13. Gusho C.A., Weiss M.C., Lee L. et al. The clinical utility of next-generation sequencing for bone and soft tissue sarcoma. Acta Oncol (Stockholm, Sweden) 2022;61(1):38–44. DOI: 10.1080/0284186x.2021.1992009
14. Nagahashi M., Shimada Y., Ichikawa H. et al. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci 2019;110(1):6–15. DOI: 10.1111/cas.13837
15. Cao J., Chen L., Li H. et al. An accurate and comprehensive clinical sequencing assay for cancer targeted and immunotherapies. Oncologist 2019;24(12):e1294–302. DOI: 10.1634/theoncologist.2019-0236
16. Scheipl S., Brcic I., Moser T. et al. Molecular profiling of soft-tissue sarcomas with FoundationOne(®) Heme identifies potential targets for sarcoma therapy: a single-centre experience. Ther Adv Med Oncol 2021;13:17588359211029125. DOI: 10.1177/17588359211029125
17. FoundationOne(®) Heme. Available at: https://www.ncbi.nlm.nih.gov/gtr/tests/527977/
18. Jour G., Scarborough J.D., Jones R.L. et al. Molecular profiling of soft tissue sarcomas using next-generation sequencing: a pilot study toward precision therapeutics. Hum Pathol 2014;45(8):1563–71. DOI: 10.1016/j.humpath.2014.04.012
19. Pritchard C.C., Salipante S.J., Koehler K. et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn 2014;16(1):56–67. DOI: 10.1016/j.jmoldx.2013.08.004
20. Hattori E., Oyama R., Kondo T. Systematic review of the current status of human sarcoma cell lines. Cells 2019;8(2):157. DOI: 10.3390/cells8020157
21. Escudero J., Heredia-Soto V., Wang Y. et al. Eribulin activity in soft tissue sarcoma monolayer and three-dimensional cell line models: could the combination with other drugs improve its antitumoral effect? Cancer Cell Int 2021;21(1):646. DOI: 10.1186/s12935-021-02337-5
22. Fourré N., Millot J.M., Garnotel R. et al. In situ analysis of doxorubicin uptake and cytotoxicity in a 3D culture model of human HT-1080 fibrosarcoma cells. Anticancer Res 2006;26(6b):4623–6.
23. Kapałczyńska M., Kolenda T., Przybyła W. et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 2018;14(4):910–9. DOI: 10.5114/aoms.2016.63743
24. Blanco-Fernandez B., Gaspar V.M., Engel E. et al. Proteinaceous hydrogels for bioengineering advanced 3D tumor models. Adv Sci (Weinheim) 2021;8(4):2003129. DOI: 10.1002/advs.202003129
25. Roohani S., Loskutov J., Heufelder J. et al. Photon and proton irradiation in patient-derived, three-dimensional soft tissue sarcoma models. BMC cancer 2023;23(1):577. DOI: 10.1186/s12885-023-11013-y
26. Li Y.R., Yu Y., Kramer A. et al. An ex vivo 3D Tumor microenvironment-mimicry culture to study TAM modulation of cancer immunotherapy. Cells 2022;11(9):1583. DOI: 10.3390/cells11091583
27. Danilova A., Misyurin V., Novik A. et al. Cancer/testis antigens expression during cultivation of melanoma and soft tissue sarcoma cells. Clin Sarcoma Res 2020;10(1):3. DOI: 10.1186/s13569-020-0125-2
28. Taborska P., Lukac P., Stakheev D. et al. Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep 2023;13(1):19079. DOI: 10.1038/s41598-023-46305-7
29. Salawu A., Fernando M., Hughes D. et al. Establishment and molecular characterisation of seven novel soft-tissue sarcoma cell lines. Br J Cancer 2016;115(9):1058–68. DOI: 10.1038/bjc.2016.259
30. Ariizumi T., Ogose A., Kawashima H. et al. Establishment and characterization of a novel dedifferentiated liposarcoma cell line, NDDLS-1. Pathol Int 2011;61(8):461–8. DOI: 10.1111/j.1440-1827.2011.02683.x
31. Muff R., Botter S.M., Husmann K. et al. Explant culture of sarcoma patients’ tissue. Lab Invest 2016;96(7):752–62. DOI: 10.1038/labinvest.2016.49
32. Cornillie J., Wozniak A., Li H. et al. Establishment and characterization of histologically and molecularly stable soft-tissue sarcoma xenograft models for biological studies and preclinical drug testing. Mol Cancer Ther 2019;18(6):1168–78. DOI: 10.1158/1535-7163.mct-18-1045
33. Фролова A.A., Геращенко Т.С., Патышева М.Р. и др. Подготовка клеточной суспензии из опухолевого материала для проведения секвенирования единичных клеток. Бюллетень экспериментальной биологии и медицины 2023;175(4):523–8. DOI: 10.47056/0365-9615-2023-175-4-523-528
34. Takai Y., Oyama R., Kito F. et al. Establishment and characterization of cell line of undifferentiated pleomorphic sarcoma. Tissue Cult Res Commun 2017;36(5):41–8. DOI: 10.11418/jtca.36.41
35. You H.J., Lee E.-Y., Rayhan A. et al. Abstract B009: Establishing new cell lines from undifferentiated pleomorphic sarcoma for sarcoma research. Clin Cancer Res 2022;28(18_Supplement):B009. DOI: 10.1158/1557-3265.sarcomas22-b009
36. Lee E.Y., Kim Y.H., Rayhan M.A. et al. New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study. BMB Rep 2023;56(4):258–64. DOI: 10.5483/BMBRep.2022-0209
37. De Vita A., Recine F., Mercatali L. et al. Primary Culture of undifferentiated pleomorphic sarcoma: molecular characterization and response to anticancer agents. Int J Mol Sci 2017;18(12):2662. DOI: 10.3390/ijms18122662
38. Soft-Tissue Sarcoma Cell Panel. ATCC. Available at: https://www.atcc.org/products/tcp-1019
39. Cellosaurus search result: 1895 hits for “Cancer Dependency Map project" (DepMap) (includes Cancer Cell Line Encyclopedia - CCLE). Available at: https://www.cellosaurus.org/search?query=%22Cancer%20Dependency%20Map%20project%20(DepMap)%20(includes%20Cancer%20Cell%20Line%20Encyclopedia%20-%20CCLE)%22
40. Cammelli S., Cortesi A., Buwenge M. et al. The role of radiotherapy in adult soft tissues sarcoma of the extremities. Eur J Orthop Surg Traumatol 2021;31(8):1583–96. DOI: 10.1007/s00590-021-02990-6
41. Miwa S., Wu P.-K., Tsuchiya H. Soft tissue sarcomas: treatment and management. Cancers (Basel) 2024;16(5):1042. DOI: 10.3390/cancers16051042
42. Tian Z., and Yao W. Chemotherapeutic drugs for soft tissue sarcomas: a review. Front Pharmacol 2023;14:1199292. DOI: 10.3389/fphar.2023.1199292
43. Fuchs J.W., Schulte B.C., Fuchs J.R. et al. Targeted therapies for the treatment of soft tissue sarcoma. Front Oncol 2023;13:1122508. DOI: 10.3389/fonc.2023.1122508
44. Banks L.B., D’angelo S.P. The role of immunotherapy in the management of soft tissue sarcomas: current landscape and future outlook. J Nat Compr Canc Net 2022;20(7):834–44. DOI: 10.6004/jnccn.2022.7027
45. Elkrief A., Alcindor T. Molecular targets and novel therapeutic avenues in soft-tissue sarcoma. Curr Oncol 2020;27(Suppl 1):34. DOI: 10.3747/co.27.5631
46. Fetisov T.I., Khazanova S.A., Shtompel P.A. et al. Perspectives of cell sensitivity/resistance assay in soft tissue sarcomas chemotherapy. Int J Mol Sci 2023;24(15):12292. DOI: 10.3390/ijms241512292
47. Su C., Kim S.K., Wang C.X. et al. Radiotherapy combined with intralesional immunostimulatory agents for soft tissue sarcomas. Sem Radiat Oncol 2024;34(2):243–57. DOI: 10.1016/j.semradonc.2024.01.001
48. Roeder F. Radiation therapy in adult soft tissue sarcoma – current knowledge and future directions: a review and expert opinion. Cancers 2020;12(11):3242. DOI: 10.3390/cancers12113242
49. Haas R., Floot B., Scholten A. et al. Cellular radiosensitivity of soft tissue sarcoma. Radiat Res 2021;196(1):23–30. DOI: 10.1667/RADE-20-00226.1
50. Brodin B.A., Wennerberg K., Lidbrink E. et al. Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer 2019;120(4):435–43. DOI: 10.1038/s41416-018-0359-4
51. Que Y., Zhang X.L., Liu Z.X. et al. Frequent amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1 blockade combination in soft tissue sarcoma. J Immunother Cancer 2021;9(2):33637599. DOI: 10.1136/jitc-2020-001696
52. Kerrison W.G.J., Lee A.T.J., Thway K. et al. Current Status and future directions of immunotherapies in soft tissue sarcomas. Biomedicines 2022;10(3):573. DOI: 10.3390/biomedicines10030573
53. Iwai Y., Baldwin X.L., Feeney T. et al. Trends in the use of immunotherapy to treat soft tissue sarcoma. Am J Surg 2024;236:115794. DOI: 10.1016/j.amjsurg.2024.115794
54. Zając A.E., Czarnecka A.M., Rutkowski P. The Role of macrophages in sarcoma tumor microenvironment and treatment. Cancers (Basel) 2023;15(21):5294. DOI: 10.3390/cancers15215294
55. Khansai M., Phitak T., Klangjorhor J. et al. Effects of sesamin on primary human synovial fibroblasts and SW982 cell line induced by tumor necrosis factor-alpha as a synovitis-like model. BMC Complement Alter Med 2017;17(1):532. DOI: 10.1186/s12906-017-2035-2
56. Roomi M.W., Ivanov V., Kalinovsky T. et al. Inhibition of cell invasion and MMP production by a nutrient mixture in malignant liposarcoma cell line SW-872. Med Oncol 2007;24(4):394–401. DOI: 10.1007/s12032-007-0022-z
57. Adams C.L., Dimitrova I., Post M.D. et al. Identification of a novel diagnostic gene expression signature to discriminate uterine leiomyoma from leiomyosarcoma. Exp Mol Pathol 2019;110:104284. DOI: 10.1016/j.yexmp.2019.104284
58. Machado-Lopez A., Alonso R., Lago V. et al. Integrative genomic and transcriptomic profiling reveals a differential molecular signature in uterine leiomyoma versus leiomyosarcoma. Int J Mol Sci 2022;23(4):2190. DOI: 10.3390/ijms23042190
59. Lu X., Liu M., Yang J. et al. Panobinostat enhances NK cell cytotoxicity in soft tissue sarcoma. Clin Exp Immunol 2022;209(2):127–39. DOI: 10.1093/cei/uxac068
60. Avdonkina N., Danilova A., Misyurin V. et al. Biological features of tissue and bone sarcomas investigated using an in vitro model of clonal selection. Pathol Res Pract 2021;217:153214. DOI: 10.1016/j.prp.2020.153214
61. Tretyakova M.S., Bokova U.A., Korobeynikova A.A. et al. Experimental models of tumor growth in soft tissue sarcomas. Вестник Российского университета дружбы народов 2023;27(4):459–69. DOI: 10.22363/2313-0245-2023-27-4-459-469
62. Katt M.E., Placone A.L., Wong A.D. et al. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 2016;4:12. DOI: 10.3389/fbioe.2016.00012
Рецензия
Для цитирования:
Бокова У.А., Третьякова М.С., Козлова П.К., Коробейникова А.А., Меняйло М.Е., Геращенко Т.С., Денисов Е.В. Модели сарком мягких тканей in vitro: фундаментальные и клинические аспекты. Успехи молекулярной онкологии. 2025;12(3):36-45. https://doi.org/10.17650/2313-805X-2025-12-3-36-45
For citation:
Bokova U.A., Tretyakova M.S., Kozlova P.K., Korobeynikova A.A., Menyailo M.E., Gerashchenko T.S., Denisov E.V. In vitro models of soft tissue sarcomas: basic and clinical aspects. Advances in Molecular Oncology. 2025;12(3):36-45. (In Russ.) https://doi.org/10.17650/2313-805X-2025-12-3-36-45