In vitro models of soft tissue sarcomas: basic and clinical aspects
- Authors: Bokova U.A.1, Tretyakova M.S.1, Kozlova P.K.1, Korobeynikova A.A.1, Menyailo M.E.1, Gerashchenko T.S.1, Denisov E.V.1
-
Affiliations:
- Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
- Issue: Vol 12, No 3 (2025)
- Pages: 36-45
- Section: REVIEW ARTICLES
- Published: 11.10.2025
- URL: https://umo.abvpress.ru/jour/article/view/814
- DOI: https://doi.org/10.17650/2313-805X-2025-12-3-36-45
- ID: 814
Cite item
Full Text
Abstract
Diagnosis and selection of effective therapy of soft tissue sarcomas (STS) are complicated by low incidence and significant histological variability of these tumors. Development of molecular and genetic testing methods is aimed at improving differential diagnosis of different types of STS and identification of genetic abnormalities which can potentially serve as targets for therapy. Development of effective treatment methods requires adequate preclinical models capable of recreating biological features of the tumors. The article presents molecular and genetic testing methods for STS diagnosis and therapy, advances in in vitro STS models, problems with their use in preclinical studies, as well as possibilities of using primary cell cultures for personalized treatment.
About the authors
U. A. Bokova
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: pushkay@yandex.ru
ORCID iD: 0000-0003-2179-5685
Ustinya Anatolyevna Bokova
5 Kooperativny Line, Tomsk 634009, Russia
Russian FederationM. S. Tretyakova
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0002-5040-931X
5 Kooperativny Line, Tomsk 634009, Russia
Russian FederationP. K. Kozlova
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0009-0003-4139-2338
5 Kooperativny Line, Tomsk 634009, Russia
Russian FederationA. A. Korobeynikova
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0002-2633-9884
5 Kooperativny Line, Tomsk 634009, Russia
Russian FederationM. E. Menyailo
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0003-4630-4934
5 Kooperativny Line, Tomsk 634009, Russia
Russian FederationT. S. Gerashchenko
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0002-7283-0092
5 Kooperativny Line, Tomsk 634009, Russia
Russian FederationE. V. Denisov
Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0003-2923-9755
5 Kooperativny Line, Tomsk 634009, Russia
Russian FederationReferences
- Marusyk A., Polyak K. Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 2010;1805(1):105–17. doi: 10.1016/j.bbcan.2009.11.002
- Sbaraglia M., Dei Tos A.P. The pathology of soft tissue sarcomas. Radiol Med 2019;124(4):266–81. doi: 10.1007/s11547-018-0882-7
- Gaebler M., Silvestri A., Haybaeck J. et al. Three-dimensional patient-derived in vitro sarcoma models: promising tools for improving clinical tumor management. Front Oncol 2017;11(7):203. doi: 10.3389/fonc.2017.00203
- Mcconnell L., Houghton O., Stewart P. et al. A novel next generation sequencing approach to improve sarcoma diagnosis. Mod Pathol 2020;33(7):1350–9. doi: 10.1038/s41379-020-0488-1
- Vibert J., Watson S. The molecular biology of soft tissue sarcomas: current knowledge and future perspectives. Cancers (Basel) 2022;14(10):2548. doi: 10.3390/cancers14102548
- Kokkali S., Boukovinas I., De Bree E. et al. The impact of expert pathology review and molecular diagnostics on the management of sarcoma patients: a prospective study of the hellenic group of sarcomas and rare cancers. Cancers (Basel) 2024;16(13):2314. doi: 10.3390/cancers16132314
- Italiano A., Di Mauro I., Rapp J. et al. Clinical effect of molecular methods in sarcoma diagnosis (GENSARC): a prospective, multicentre, observational study. Lancet Oncol 2016;17(4):532–8. doi: 10.1016/s1470-2045(15)00583-5
- Benini S., Gamberi G., Cocchi S. et al. The efficacy of molecular analysis in the diagnosis of bone and soft tissue sarcoma: a 15-year mono-institutional study. Int J Mol Sci 2022;24(1):632. doi: 10.3390/ijms24010632
- Watkins J.A., Trotman J., Tadross J.A. et al. Introduction and impact of routine whole genome sequencing in the diagnosis and management of sarcoma. Br J Cancer 2024;131(5):860–9. doi: 10.1038/s41416-024-02721-8
- Gounder M.M., Agaram N.P., Trabucco S.E. et al. Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nat Commun 2022;13(1):3406. doi: 10.1038/s41467-022-30496-0
- Bean L.J.H., Funke B., Carlston C.M. et al. Diagnostic gene sequencing panels: from design to report-a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020;22(3):453–61. doi: 10.1038/s41436-019-0666-z
- Xu L., Xie X., Shi X. et al. Potential application of genomic profiling for the diagnosis and treatment of patients with sarcoma. Oncol Lett 2021;21(5):353. doi: 10.3892/ol.2021.12614
- Gusho C.A., Weiss M.C., Lee L. et al. The clinical utility of next-generation sequencing for bone and soft tissue sarcoma. Acta Oncol (Stockholm, Sweden) 2022;61(1):38–44. doi: 10.1080/0284186x.2021.1992009
- Nagahashi M., Shimada Y., Ichikawa H. et al. Next generation sequencing-based gene panel tests for the management of solid tumors. Cancer Sci 2019;110(1):6–15. doi: 10.1111/cas.13837
- Cao J., Chen L., Li H. et al. An accurate and comprehensive clinical sequencing assay for cancer targeted and immunotherapies. Oncologist 2019;24(12):e1294–302. doi: 10.1634/theoncologist.2019-0236
- Scheipl S., Brcic I., Moser T. et al. Molecular profiling of soft-tissue sarcomas with FoundationOne(®) Heme identifies potential targets for sarcoma therapy: a single-centre experience. Ther Adv Med Oncol 2021;13:17588359211029125. doi: 10.1177/17588359211029125
- FoundationOne(®) Heme. Available at: https://www.ncbi.nlm.nih.gov/gtr/tests/527977/
- Jour G., Scarborough J.D., Jones R.L. et al. Molecular profiling of soft tissue sarcomas using next-generation sequencing: a pilot study toward precision therapeutics. Hum Pathol 2014;45(8):1563–71. doi: 10.1016/j.humpath.2014.04.012
- Pritchard C.C., Salipante S.J., Koehler K. et al. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn 2014;16(1):56–67. doi: 10.1016/j.jmoldx.2013.08.004
- Hattori E., Oyama R., Kondo T. Systematic review of the current status of human sarcoma cell lines. Cells 2019;8(2):157. doi: 10.3390/cells8020157
- Escudero J., Heredia-Soto V., Wang Y. et al. Eribulin activity in soft tissue sarcoma monolayer and three-dimensional cell line models: could the combination with other drugs improve its antitumoral effect? Cancer Cell Int 2021;21(1):646. doi: 10.1186/s12935-021-02337-5
- Fourré N., Millot J.M., Garnotel R. et al. In situ analysis of doxorubicin uptake and cytotoxicity in a 3D culture model of human HT-1080 fibrosarcoma cells. Anticancer Res 2006;26(6b):4623–6.
- Kapałczyńska M., Kolenda T., Przybyła W. et al. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 2018;14(4):910–9. doi: 10.5114/aoms.2016.63743
- Blanco-Fernandez B., Gaspar V.M., Engel E. et al. Proteinaceous hydrogels for bioengineering advanced 3D tumor models. Adv Sci (Weinheim) 2021;8(4):2003129. doi: 10.1002/advs.202003129
- Roohani S., Loskutov J., Heufelder J. et al. Photon and proton irradiation in patient-derived, three-dimensional soft tissue sarcoma models. BMC cancer 2023;23(1):577. doi: 10.1186/s12885-023-11013-y
- Li Y.R., Yu Y., Kramer A. et al. An ex vivo 3D Tumor microenvironment-mimicry culture to study TAM modulation of cancer immunotherapy. Cells 2022;11(9):1583. doi: 10.3390/cells11091583
- Danilova A., Misyurin V., Novik A. et al. Cancer/testis antigens expression during cultivation of melanoma and soft tissue sarcoma cells. Clin Sarcoma Res 2020;10(1):3. doi: 10.1186/s13569-020-0125-2
- Taborska P., Lukac P., Stakheev D. et al. Novel PD-L1- and collagen-expressing patient-derived cell line of undifferentiated pleomorphic sarcoma (JBT19) as a model for cancer immunotherapy. Sci Rep 2023;13(1):19079. doi: 10.1038/s41598-023-46305-7
- Salawu A., Fernando M., Hughes D. et al. Establishment and molecular characterisation of seven novel soft-tissue sarcoma cell lines. Br J Cancer 2016;115(9):1058–68. doi: 10.1038/bjc.2016.259
- Ariizumi T., Ogose A., Kawashima H. et al. Establishment and characterization of a novel dedifferentiated liposarcoma cell line, NDDLS-1. Pathol Int 2011;61(8):461–8. doi: 10.1111/j.1440-1827.2011.02683.x
- Muff R., Botter S.M., Husmann K. et al. Explant culture of sarcoma patients’ tissue. Lab Invest 2016;96(7):752–62. doi: 10.1038/labinvest.2016.49
- Cornillie J., Wozniak A., Li H. et al. Establishment and characterization of histologically and molecularly stable soft-tissue sarcoma xenograft models for biological studies and preclinical drug testing. Mol Cancer Ther 2019;18(6):1168–78. doi: 10.1158/1535-7163.mct-18-1045
- Frolova A.A., Gerashchenko T.S., Patysheva M.R. et al. Preparation of a cell suspension from tumor material for single cell sequencing. Byulleten’ eksperimental’noy biologii i meditsiny = Bulletin of Experimental Biology and Medicine 2023;175(4):523–8. (In Russ.). doi: 10.47056/0365-9615-2023-175-4-523-528
- Takai Y., Oyama R., Kito F. et al. Establishment and characterization of cell line of undifferentiated pleomorphic sarcoma. Tissue Cult Res Commun 2017;36(5):41–8. doi: 10.11418/jtca.36.41
- You H.J., Lee E.-Y., Rayhan A. et al. Abstract B009: Establishing new cell lines from undifferentiated pleomorphic sarcoma for sarcoma research. Clin Cancer Res 2022;28(18_Supplement):B009. doi: 10.1158/1557-3265.sarcomas22-b009
- Lee E.Y., Kim Y.H., Rayhan M.A. et al. New established cell lines from undifferentiated pleomorphic sarcoma for in vivo study. BMB Rep 2023;56(4):258–64. doi: 10.5483/BMBRep.2022-0209
- De Vita A., Recine F., Mercatali L. et al. Primary Culture of undifferentiated pleomorphic sarcoma: molecular characterization and response to anticancer agents. Int J Mol Sci 2017;18(12):2662. doi: 10.3390/ijms18122662
- Soft-Tissue Sarcoma Cell Panel. ATCC. Available at: https://www.atcc.org/products/tcp-1019
- Cellosaurus search result: 1895 hits for “Cancer Dependency Map project" (DepMap) (includes Cancer Cell Line Encyclopedia - CCLE). Available at: https://www.cellosaurus.org/search?query=%22Cancer%20Dependency%20Map%20project%20(DepMap)%20(includes%20Cancer%20Cell%20Line%20Encyclopedia%20-%20CCLE)%22
- Cammelli S., Cortesi A., Buwenge M. et al. The role of radiotherapy in adult soft tissues sarcoma of the extremities. Eur J Orthop Surg Traumatol 2021;31(8):1583–96. doi: 10.1007/s00590-021-02990-6
- Miwa S., Wu P.-K., Tsuchiya H. Soft tissue sarcomas: treatment and management. Cancers (Basel) 2024;16(5):1042. doi: 10.3390/cancers16051042
- Tian Z., and Yao W. Chemotherapeutic drugs for soft tissue sarcomas: a review. Front Pharmacol 2023;14:1199292. doi: 10.3389/fphar.2023.1199292
- Fuchs J.W., Schulte B.C., Fuchs J.R. et al. Targeted therapies for the treatment of soft tissue sarcoma. Front Oncol 2023;13:1122508. doi: 10.3389/fonc.2023.1122508
- Banks L.B., D’angelo S.P. The role of immunotherapy in the management of soft tissue sarcomas: current landscape and future outlook. J Nat Compr Canc Net 2022;20(7):834–44. doi: 10.6004/jnccn.2022.7027
- Elkrief A., Alcindor T. Molecular targets and novel therapeutic avenues in soft-tissue sarcoma. Curr Oncol 2020;27(Suppl 1):34. doi: 10.3747/co.27.5631
- Fetisov T.I., Khazanova S.A., Shtompel P.A. et al. Perspectives of cell sensitivity/resistance assay in soft tissue sarcomas chemotherapy. Int J Mol Sci 2023;24(15):12292. doi: 10.3390/ijms241512292
- Su C., Kim S.K., Wang C.X. et al. Radiotherapy combined with intralesional immunostimulatory agents for soft tissue sarcomas. Sem Radiat Oncol 2024;34(2):243–57. doi: 10.1016/j.semradonc.2024.01.001
- Roeder F. Radiation therapy in adult soft tissue sarcoma – current knowledge and future directions: a review and expert opinion. Cancers 2020;12(11):3242. doi: 10.3390/cancers12113242
- Haas R., Floot B., Scholten A. et al. Cellular radiosensitivity of soft tissue sarcoma. Radiat Res 2021;196(1):23–30. doi: 10.1667/RADE-20-00226.1
- Brodin B.A., Wennerberg K., Lidbrink E. et al. Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas. Br J Cancer 2019;120(4):435–43. doi: 10.1038/s41416-018-0359-4
- Que Y., Zhang X.L., Liu Z.X. et al. Frequent amplification of HDAC genes and efficacy of HDAC inhibitor chidamide and PD-1 blockade combination in soft tissue sarcoma. J Immunother Cancer 2021;9(2):33637599. doi: 10.1136/jitc-2020-001696
- Kerrison W.G.J., Lee A.T.J., Thway K. et al. Current Status and future directions of immunotherapies in soft tissue sarcomas. Biomedicines 2022;10(3):573. doi: 10.3390/biomedicines10030573
- Iwai Y., Baldwin X.L., Feeney T. et al. Trends in the use of immunotherapy to treat soft tissue sarcoma. Am J Surg 2024;236:115794. doi: 10.1016/j.amjsurg.2024.115794
- Zając A.E., Czarnecka A.M., Rutkowski P. The Role of macrophages in sarcoma tumor microenvironment and treatment. Cancers (Basel) 2023;15(21):5294. doi: 10.3390/cancers15215294
- Khansai M., Phitak T., Klangjorhor J. et al. Effects of sesamin on primary human synovial fibroblasts and SW982 cell line induced by tumor necrosis factor-alpha as a synovitis-like model. BMC Complement Alter Med 2017;17(1):532. doi: 10.1186/s12906-017-2035-2
- Roomi M.W., Ivanov V., Kalinovsky T. et al. Inhibition of cell invasion and MMP production by a nutrient mixture in malignant liposarcoma cell line SW-872. Med Oncol 2007;24(4):394–401. doi: 10.1007/s12032-007-0022-z
- Adams C.L., Dimitrova I., Post M.D. et al. Identification of a novel diagnostic gene expression signature to discriminate uterine leiomyoma from leiomyosarcoma. Exp Mol Pathol 2019;110:104284. doi: 10.1016/j.yexmp.2019.104284
- Machado-Lopez A., Alonso R., Lago V. et al. Integrative genomic and transcriptomic profiling reveals a differential molecular signature in uterine leiomyoma versus leiomyosarcoma. Int J Mol Sci 2022;23(4):2190. doi: 10.3390/ijms23042190
- Lu X., Liu M., Yang J. et al. Panobinostat enhances NK cell cytotoxicity in soft tissue sarcoma. Clin Exp Immunol 2022;209(2):127–39. doi: 10.1093/cei/uxac068
- Avdonkina N., Danilova A., Misyurin V. et al. Biological features of tissue and bone sarcomas investigated using an in vitro model of clonal selection. Pathol Res Pract 2021;217:153214. doi: 10.1016/j.prp.2020.153214
- Tretyakova M.S., Bokova U.A., Korobeynikova A.A. et al. Experimental models of tumor growth in soft tissue sarcomas. Vestnik Rossyskogo universiteta druzhby narodov = RUDN Journal of Medicine. 2023;27(4):459–69. (In Russ.). doi: 10.22363/2313-0245-2023-27-4-459-46
- Katt M.E., Placone A.L., Wong A.D. et al. In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 2016;4:12. doi: 10.3389/fbioe.2016.00012
Supplementary files


