Contemporary views on the clinical, epidemiological and molecular genetic characteristics of melanoma of the skin and mucous membranes
- Authors: Bogdanova V.A.1, Spirina L.V.1,2, Chizhevskaya S.Y.1,2, Kovaleva I.V.1,2, Nikulnikov K.V.2
-
Affiliations:
- Siberian State Medical University, Ministry of Health of the Russia
- Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
- Issue: Vol 11, No 1 (2024)
- Pages: 22-30
- Section: REVIEW
- Published: 05.04.2024
- URL: https://umo.abvpress.ru/jour/article/view/646
- DOI: https://doi.org/10.17650/2313-805X-2024-11-1-22-30
- ID: 646
Cite item
Full Text
Abstract
Melanoma of the skin and mucous membranes remains a global medical problem, which is associated with the increasing prevalence of this disease and the lack of adequate molecular genetic markers for its diagnosis and prognosis. The development of molecular approaches in the treatment of this type of tumor is associated with the identification of mutations, and with the development of immunotherapeutic and targeted drugs that can improve the effectiveness of treatment of patients with this pathology. However, the heterogeneity of the mechanisms of tumor development and the formation of resistance are a problem. It is worth noting the presence of many epigenetic mechanisms that are promising markers of the development, diagnosis and prognosis of the effectiveness of treatment of melanoma of the skin and mucous membranes. This review contains up-to-date information on the molecular mechanisms of the disease associated with the genetic characteristics of the tumor and biological factors of resistance to therapy. Of particular interest is the intersection of signaling pathways associated with melanocyte-inducing transcription factor (MITF), which is associated with transcription and growth factors, and is a target of epigenetic regulation using microRNAs and long non-coding RNAs.
About the authors
V. A. Bogdanova
Siberian State Medical University, Ministry of Health of the Russia
Email: fake@neicon.ru
ORCID iD: 0009-0003-8473-4182
2 Moskovsky Tract, Tomsk 634050
Russian FederationL. V. Spirina
Siberian State Medical University, Ministry of Health of the Russia; Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
Author for correspondence.
Email: spirinalvl@mail.ru
ORCID iD: 0000-0002-5269-736X
Lyudmila Viktorovna Spirina
2 Moskovsky Tract, Tomsk 634050; 5 Cooperative Lane, Tomsk 634009
Russian FederationS. Yu. Chizhevskaya
Siberian State Medical University, Ministry of Health of the Russia; Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0003-2974-4778
2 Moskovsky Tract, Tomsk 634050; 5 Cooperative Lane, Tomsk 634009
Russian FederationI. V. Kovaleva
Siberian State Medical University, Ministry of Health of the Russia; Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0000-0003-2964-9041
2 Moskovsky Tract, Tomsk 634050; 5 Cooperative Lane, Tomsk 634009
Russian FederationK. V. Nikulnikov
Cancer Research Institute of the Tomsk National Research Medical Center of the Russian Academy of Sciences
Email: fake@neicon.ru
ORCID iD: 0009-0004-7211-7686
5 Cooperative Lane, Tomsk 634009
Russian FederationReferences
- Ufimtseva M.A., Shubina A.S., Struin N.L. et al. The algorithm of providing medical preventive care of patients of risk group of development of malignant tumors of skin. Zdravookhranenie Rossiiskoi Federatsii = Healthcare of the Russian Federation 2017;61(5):257–62. (In Russ.). doi: 10.18821/0044-197Х-2017-61-5-257-262
- Rybkina V.L., Azizova T.V., Adamova G.V. Risk factors of malignant neoplasms of the skin. Klinicheskaya dermatologiya i venerologiya = Russian Journal of Clinical Dermatology and Venereology 2019;18(5): 548–55. (In Russ.). doi: 10.17116/klinderma201918051548
- Karimkhani C., Green A.C., Nijsten T. et al. The global burden of melanoma: results from the Global Burden of Disease Study 2015. Br J Dermatol 2017;177(1):134–40. doi: 10.1111/bjd.15510
- Abrahamian C., Grimm C. Endolysosomal cation channels and MITF in melanocytes and melanom. Biomolecules 2021;11(7):1021. doi: 10.3390/biom11071021
- Fesenko D.O., Abramov I.S., Shershov V.E. et al. Multiplex assay to evaluate the genetic risk of developing human melanoma. Mol Biol (Mosk) 2018;52(6):997–1005. doi: 10.1134/S0026898418060071
- Sabag N., Yakobson A., Retchkiman M. et al. Novel biomarkers and therapeutic targets for melanoma. Int J Mol Sci 2022;23(19):11656. doi: 10.3390/ijms231911656
- Newton-Bishop J., Bishop D.T., Harland M. Melanoma genomics. Acta Derm Venereol 2020;100(11):adv00138. doi: 10.2340/00015555-3493
- Lavoie H., Sahmi M., Maisonneuve P. et al. MEK drives BRAF activation through allosteric control of KSR proteins. Nature 2018;554(7693):549–53. doi: 10.1038/nature25478
- Lattmann E., Levesque M.P. The role of extracellular vesicles in melanoma progression. Cancers (Basel) 2022;14(13):3086. doi: 10.3390/cancers14133086
- Thatikonda S., Pooladanda V., Tokala R. et al. Niclosamide inhibits epithelial-mesenchymal transition with apoptosis induction in BRAF/ NRAS mutated metastatic melanoma cells. Toxicol In Vitro 2023;89:105579. doi: 10.1016/j.tiv.2023.105579
- Liu L., Wu Y., Bian C. et al. Heme oxygenase 1 facilitates cell proliferation via the B-Raf-ERK signaling pathway in melanoma. Cell Commun Signal 2019;17(1):3. doi: 10.1186/s12964-018-0313-3
- Zhao J., Benton S., Zhang B. et al. Benign and intermediate-grade melanocytic tumors with BRAF mutations and spitzoid morphology: a subset of melanocytic neoplasms distinct from melanoma. Am J Surg Pathol 2022;46(4):476–85. doi: 10.1097/PAS.0000000000001831
- Berwick M., Buller D.B., Cust A. et al. Melanoma epidemiology and prevention. Cancer Treat Res 2016;167:17–49. doi: 10.1007/978-3-319-22539-5_2
- Grigalavicius M., Moan J., Dahlback A. et al. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer. Int J Dermatol 2016;55(1):23–8. doi: 10.1111/ijd.13065
- D’Ecclesiis O., Caini S., Martinoli C. et al. Gender-dependent specificities in cutaneous melanoma predisposition, risk factors, somatic mutations, prognostic and predictive factors: a systematic review. Int J Environ Res Public Health 2021;18(15):7945. doi: 10.3390/ijerph18157945
- Leonardi G.C., Falzone L., Salemi R. et al. Cutaneous melanoma: from pathogenesis to therapy (Review). Int J Oncol 2018;52(4):1071–80. doi: 10.3892/ijo.2018.4287
- Tímár J., Ladányi A. Molecular pathology of skin melanoma: epidemiology, differential diagnostics, prognosis and therapy prediction. Int J Mol Sci 2022;23(10):5384. doi: 10.3390/ijms23105384
- Vízkeleti J., Doma L., Barbai V. et al. Genetic progression of malignant melanoma. Cancer Metastasis Rev 2016;35(1):93–107. doi: 10.1007/s10555-016-9613-5
- Soura E., Eliades P.J., Shannon K. et al. Hereditary melanoma: update on syndromes and management: genetics of familial atypical multiple mole melanoma syndrome. J Am Acad Dermatol 2016;74(3):395–410. doi: 10.1016/j.jaad.2015.08.038
- Wang L., Lu A.P., Yu Z.L. et al. The melanogenesis-inhibitory effect and the percutaneous formulation of ginsenoside Rb1. AAPS PharmSciTech 2014;15(5):1252–62. doi: 10.1208/s12249-014-0138-3
- Liu J., Zhang C., Wang J. et al. The regulation of ferroptosis by tumor suppressor p53 and its pathway. Int J Mol Sci 2020;21(21):8387. doi: 10.3390/ijms21218387
- Xie X., Koh J.Y., Price S. et al. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov 2015;5(4):410–23. doi: 10.1158/2159-8290.CD-14-1473
- Liu H., He Z., Simon H.U. Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy 2014;10(2):372–3. doi: 10.4161/auto.27163
- Li S., Song Y., Quach C. et al. Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat Commun 2019;10(1):1693. doi: 10.1038/s41467-019-09634-8
- Mei X.L., Wei F.L., Jia L.L. et al. An alternative pathway for cellular protection in BRAF inhibitor resistance in aggressive melanoma type skin cancer. Chem Biol Interact 2020;323:109061. doi: 10.1016/j.cbi.2020.109061
- Tang D.Y., Ellis R.A., Lovat P.E. Prognostic impact of autophagy biomarkers for cutaneous melanoma. Front Oncol 2016;6:236. doi: 10.3389/fonc.2016.00236
- Ramkumar A., Murthy D., Raja D.A. et al. Classical autophagy proteins LC3B and ATG4B facilitate melanosome movement on cytoskeletal tracks. Autophagy 2017;13(8):1331–47. doi: 10.1080/15548627.2017.1327509
- Chen M., Li Q., Chen W. et al. Diagnostic and prognostic value of Beclin 1 expression in melanoma: a meta-analysis. Melanoma Res 2021;31(6):541–9. doi: 10.1097/CMR.0000000000000780
- Oliveira R.D., Celeiro S.P., Barbosa-Matos C. et al. Portuguese propolis antitumoral activity in melanoma involves ROS production and induction of apoptosis. Molecules 2022;27(11):3533. doi: 10.3390/molecules27113533
- Teixido C., Castillo P., Martinez-Vila C. et al. Molecular markers and targets in melanoma. Cells 2021;10(9):2320. doi: 10.3390/cells10092320
- Ellis R.A., Horswell S., Ness T. et al. Prognostic impact of p62 expression in cutaneous malignant melanoma. J Invest Dermatol 2014;134(5):1476–8. doi: 10.1038/jid.2013.497
- Armstrong J.L., Hill D.S., McKee C.S. et al. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. J Invest Dermatol 2015;135(6):1629–37. doi: 10.1038/jid.2015.45
- Simmons J.L., Pierce C.J., Al-Ejeh F. et al. MITF and BRN2 contribute to metastatic growth after dissemination of melanoma. Sci Rep 2017;7(1):10909. doi: 10.1038/s41598-017-11366-y
- Mirzaei H., Gholamin S., Shahidsales S. et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. Eur J Cancer 2016;53:25–32. doi: 10.1016/j.ejca.2015.10.009
- Qi J., Wang W.W., Chen W. et al. Mechanism of miR-137 regulating migration and invasion of melanoma cells by targeting PIK3R3 gene. J Cell Biochem 2019;120(5):8393–400. doi: 10.1002/jcb.28124
- Varrone F., Caputo E. The miRNAs role in melanoma and in its resistance to therapy. Int J Mol Sci 2020;21(3):878. doi: 10.3390/ijms21030878
- Liu X., Li H., Wu G. et al. miR-182 promotes cell proliferation and invasion by inhibiting APC in melanoma. Int J Clin Exp Pathol 2018;11(4):1900–8.
- Qian H., Yang C., Yang Y. MicroRNA-26a inhibits the growth and invasiveness of malignant melanoma and directly targets on MITF gene. Cell Death Discov 2017;3:17028. doi: 10.1038/cddiscovery.2017.28
- Noguchi S., Kumazaki M., Mori T. et al. Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet Comp Oncol 2016;14(4):384–94. doi: 10.1111/vco.12118
- Margue C., Philippidou D., Reinsbach S.E. et al. New target genes of MITF-induced microRNA-211 contribute to melanoma cell invasion. PLoS One 2013;8(9):e73473. doi: 10.1371/journal.pone.0073473
- Bell R.E., Khaled M., Netanely D. et al. Transcription factor/ microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. J Invest Dermatol 2014;134(2):441–51. doi: 10.1038/jid.2013.340.
- Arts N., Cané S., Hennequart M. et al. microRNA-155, induced by interleukin-1β, represses the expression of microphthalmia associated transcription factor (MITF-M) in melanoma cells. PLoS One 2015;10(4):e0122517. doi: 10.1371/journal.pone.0122517
- Wang Y., Ou Z., Sun Y. et al. Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXLsignals.Oncogene 2017;36(12):1644–54. doi: 10.1038/onc.2016.330
- Möller K., Sigurbjornsdottir S., Arnthorsson A.O. et al. MITF has a central role in regulating starvation-induced autophagy in melanoma. Sci Rep 2019;9(1):1055. doi: 10.1038/s41598-018-37522-6
- Wang L.X., Wan C., Dong Z.B. et al. Integrative analysis of long noncoding RNA (lncRNA), microRNA (miRNA) and mRNA expression and construction of a competing endogenous RNA (ceRNA) Network in Metastatic Melanoma. Med Sci Monit 2019;25:2896–907. doi: 10.12659/MSM.913881
- Wang X., Ren Z., Xu Y. et al. KCNQ1OT1 sponges miR-34a to promote malignant progression of malignant melanoma via upregulation of the STAT3/PD-L1 axis. Environ Toxicol 2023;38(2):368–80. doi: 10.1002/tox.23687
- Tian T., Luo B., Shen G. et al. LncRNA MSC-AS1, as an oncogene in melanoma, promotes the proliferation and glutaminolysis by regulating the miR-330-3p/YAP1 axis. Anticancer Drugs 2022;33(10):1012–23. doi: 10.1097/CAD.0000000000001390
- Chen G., Yan J. Dysregulation of SNHG16(lncRNA)-Hsa-Let-7b5p(miRNA)-TUBB4A (mRNA) pathway fuels progression of skin cutaneous melanoma. Curr Protein Pept Sci 2022; 23(11):791–809. doi: 10.2174/1389201023666220928120902
- Li Y., Gao Y., Niu X. et al. LncRNA BASP1-AS1 interacts with YBX1 to regulate Notch transcription and drives the malignancy of melanoma. Cancer Sci 2021;112(11):4526–42. doi: 10.1111/cas.15140
Supplementary files


