Vol 1, No 2 (2014)
- Year: 2014
- Published: 15.05.2014
- Articles: 8
- URL: https://umo.abvpress.ru/jour/issue/view/3
Full Issue
RESEARCH ARTICLES
Endocytosis of the IFNAR1 chain of Type 1 interferon receptor is regulated by diverse E2 ubiquitin conjugation enzymes
Abstract
Ubiquitination of signaling receptors triggers their endocytosis to restrict the extent of cell signaling. Type 1 interferon (IFN1) eliminates its receptor from cell surface via stimulating the ubiquitination of its IFNAR1 chain. While it was suggested that this ubiquitination aids IFNAR1
internalization via relieving a steric hindrance of a linear motif within IFNAR1 from the endocytic machinery, the mechanisms involved remain poorly understood. Here we describe a specific role for two disparate ubiquitin acceptor sites within this receptor. These sites, Lys501 and Lys525 / 526, exhibit a preference for polyubiquitination via either Lys63- or Lys48‑linked chains (K63‑Ub and K48‑Ub, respectively). Whereas the SCFβTrcp E3 ubiquitin ligase controls either type of ubiquitination-dependent IFNAR1 endocytosis, the specificity of these processes is determined by two different E2 ubiquitin conjugating enzymes, Ubc13 and Cdc34. These enzymes can be directly used by SCFβTrcp E3 ubiquitin ligase to generate either K63‑Ub or K48‑Ub in vitro. Ubc13 is involved in IFNAR1 endocytosis driven by the K63‑Ub modification of Lys501, whereas the K48‑Ub-specific Cdc34 affects receptor endocytosis via ubiquitin conjugation that occurs on Lys525 / 526. Both types of linkages combine to maximize IFNAR1 endocytosis otherwise suppressed by unfavorable conformation dependent on the presence of a conserved Pro470 within the intracellular domain of IFNAR1. We propose a model where alternate utilization of both E2s to assemble diverse polyubiquitin linkages cooperates to achieve IFNAR1 intracellular domain conformations and spatial arrangements that favor a maximal rate of receptor endocytosis.
50-60
Endocytosis of the IFNAR1 chain of Type 1 interferon receptor is regulated by diverse E2 ubiquitin conjugation enzymes
Abstract
Ubiquitination of signaling receptors triggers their endocytosis to restrict the extent of cell signaling. Type 1 interferon (IFN1) eliminates its receptor from cell surface via stimulating the ubiquitination of its IFNAR1 chain. While it was suggested that this ubiquitination aids IFNAR1 internalization via relieving a steric hindrance of a linear motif within IFNAR1 from the endocytic machinery, the mechanisms involved remain poorly understood. Here we describe a specific role for two disparate ubiquitin acceptor sites within this receptor. These sites, Lys501 and Lys525 / 526, exhibit a preference for polyubiquitination via either Lys63- or Lys48‑linked chains (K63‑Ub and K48‑Ub, respectively). Whereas the SCFβTrcp E3 ubiquitin ligase controls either type of ubiquitination-dependent IFNAR1 endocytosis, the specificity of these processes is determined by two different E2 ubiquitin conjugating enzymes, Ubc13 and Cdc34. These enzymes can be directly used by SCFβTrcp E3 ubiquitin ligase to generate either K63‑Ub or K48‑Ub in vitro. Ubc13 is involved in IFNAR1 endocytosis driven by the K63‑Ub modification of Lys501, whereas the K48‑Ub-specific Cdc34 affects receptor endocytosis via ubiquitin conjugation that occurs on
Lys525 / 526. Both types of linkages combine to maximize IFNAR1 endocytosis otherwise suppressed by unfavorable conformation dependent on the presence of a conserved Pro470 within the intracellular domain of IFNAR1. We propose a model where alternate utilization of both E2s to assemble diverse polyubiquitin linkages cooperates to achieve IFNAR1 intracellular domain conformations and spatial arrangements that favor a maximal rate of receptor endocytosis.
61-73
REVIEW
Modern strategies for study of tumor’s markers in clinical practic
Abstract
Importance of molecular genetics-based essays in clinical oncology is now unquestionable due to the fact that all oncological diseases and their progression are based on cascading accumulation of genetic aberrations involving more than 20 different genes. Essentially new capacities of clinical oncology are uncovered with the help of modern molecular biology methods that allow to determine structural and functional changes of genes and their products. This review examines approaches to improve criteria for creating diagnostic essays, evaluation of treatment efficiency and molecular factors of clinical course. In order to determine relevant markers, special consideration should be given to the research of signal transduction pathways involving key genes responsible for tumor growth and their partners. The correct formation of patient’s groups and selection of samples is very important. It is emphasized that integrated clinical programs should combine traditional methods of diagnostics and treatment with modern molecular testing and bioinformatics methods.
4-15
Hereditary breast cancer: genetic and clinical hetergeneity, genetic testing, prophylactic surgery
Abstract
5–10 % of breast cancer cases are hereditary, 30 % of them are caused by BRCA1 and BRCA2 mutations (breast / ovarian cancer syndrome). Average cumulative risks of breast and ovarian cancer in BRCA1 mutation carriers run up to 87 % and 44 %, correspondingly. The risk for contralateral breast cancer is also high: after 25 years, 62.9 % of patients with BRCA1 mutation who were younger than 40 years of age at first breast cancer develop contralateral breast cancer. The role of single nucleotide polymorphisms in BRCA1 and BRCA2 genes modifying breast and gynaecological cancer risks is actively studied. Genetic testing is performed as a part of genetic counselling. The main inclusion criteria are multiple affected family members with breast / ovarian cancer, breast cancer at young age (under 35–50 years), ovarian cancer at any age, male breast cancer, morphological features of breast cancer (triple-negative, medullar tumors), ethnicity (Jewish ancestry). High-risk individuals carrying BRCA mutations undergo specific surveillance, chemoprophylaxis and surgery protocols. Prophylactic bilateral mastectomy reduces breast cancer risk by 90–94 %.
16-25





